Arrival times by Recurrent Neural Network for induced seismic events from a permanent network

. 2023 ; 6 () : 1174478. [epub] 20230804

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37600499

We have developed a Recurrent Neural Network (RNN)-based phase picker for data obtained from a local seismic monitoring array specifically designated for induced seismicity analysis. The proposed algorithm was rigorously tested using real-world data from a network encompassing nine three-component stations. The algorithm is designed for multiple monitoring of repeated injection within the permanent array. For such an array, the RNN is initially trained on a foundational dataset, enabling the trained algorithm to accurately identify other induced events even if they occur in different regions of the array. Our RNN-based phase picker achieved an accuracy exceeding 80% for arrival time picking when compared to precise manual picking techniques. However, the event locations (based on the arrival picking) had to be further constrained to avoid false arrival picks. By utilizing these refined arrival times, we were able to locate seismic events and assess their magnitudes. The magnitudes of events processed automatically exhibited a discrepancy of up to 0.3 when juxtaposed with those derived from manual processing. Importantly, the efficacy of our results remains consistent irrespective of the specific training dataset employed, provided that the dataset originates from within the network.

Zobrazit více v PubMed

Allen R. (1982). Automatic phase pickers: Their present use and future prospects. Bull. Seismol. Soc. Am. 72(6B), S225–S242.

Anikiev D., Birnie C., bin Waheed U., Alkhalifah T., Gu C., Verschuur D. J., et al. . (2023). Machine learning in microseismic monitoring. Earth-Sci. Rev. 239, 104371. 10.1016/j.earscirev.2023.104371 DOI

Chen G., Li J. (2022). CubeNet: array-based seismic phase picking with deep learning. Seismol. Res. Lett. xx, 1–16. 10.1785/0220220147 DOI

Ciaburro G., Iannace G. (2022). Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials. Appl. Acoust. 189, 108605.

Duncan Peter M., Eisner L. (2010). Reservoir characterization using surface microseismic monitoring. Geophysics. 75, 139–146.

Ellsworth W. L. (2013). Injection-induced earthquakes. Science. 341, 942. 10.1126/science.1225942 PubMed DOI

Häring M. O., Schanz U., Ladner F., Dyer B. C. (2008). Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37, 469–495. 10.1016/j.geothermics.2008.06.002 DOI

Jung A. (2022). “The landscape of ML,” in Machine Learning: The Basics (Singapore: Springer Nature Singapore; ), 57–80.

Kirschner D., Howes N., Daly C., Mukherjee J., Li J. (2019). “Detecting P-and S-wave arrivals with a recurrent neural network,” in SEG International Exposition and Annual Meeting (SEG: ).

Kolár P., Petružálek M. (2022). A two-step algorithm for acoustic emission event discrimination based on recurrent neural networks. Comput. Geosci. 163, 105119. 10.1016/j.cageo.2022.105119 DOI

Krizhevsky A., Sutskever I., Hinton G. E. (2012). “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems, Vol. 25.

Kuyuk H. S., Susumu O. (2018). Real-time classification of earthquake using deep learning. Procedia Comput. Sci. 140, 298–305.

Lee K. J., Lee B. (2022). End-to-end deep learning architecture for separating maternal and fetal ECGs using W-Net. IEEE Access. 10, 39782–39788. 10.1109/ACCESS.2022.3166925 DOI

Li Z., Meier M. A., Hauksson E., Zhan Z., Andrews J. (2018). Machine learning seismic wave discrimination: Application to earthquake early warning. Geophys. Res. Lett. 45, 4773–4779.

Mousavi S. M., Beroza C. G. (2022). Deep-learning seismology. Science. 377, 6607. 10.1126/science.abm4470 PubMed DOI

Mousavi S. M., Ellsworth W. L., Zhu W., Chuang L. Y., Beroza G. C. (2020). Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 11, 3952. PubMed PMC

Mousavi S. M., Zhu W., Sheng Y., Beroza G. C. (2019). CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection. Scient. Rep. 9, 10267. PubMed PMC

Raleigh C. B., Healy J. H., Bredehoeft J. D. (1976). An experiment in earthquake control at Rangely, Colorado. Science. 191, 1230–1237. 10.1126/science.191.4233.1230 PubMed DOI

Ronneberger O., Fischer P., Brox T. (2015). U-Net: convolutional networks for biomedical image segmentation. IEEE Access. 9, 16591–16603. 10.1109/ACCESS.2021.3053408 DOI

Snoek J., Larochelle H., Adams R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms, 2960–2968. Available online at: http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms (accessed May 5, 2023).

van den Ende M. P., Ampuero J. P. (2020). Automated seismic source characterization using deep graph neural networks. Geophys. Res. Lett. 47, e2020GL088690.

Verdon J. P., Bommer J. J. (2021). Green, yellow, red, or out of the blue? An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity. J. Seismol. 25, 301–326. 10.1007/s10950-020-09966-9 DOI

Witten I. H., Frank E. (2016). Data Mining: Practical Machine Learning Tools and Techniques. 4th Edn. Morgan Kaufmann. Available online at: https://www.cs.waikato.ac.nz/ml/weka/book.html (accessed August 12, 2021).

Woollam J., Rietbrock A., Bueno A., De Angelis S. (2019). Convolutional neural network for seismic phase classification, performance demonstration over a local seismic network. Seismol. Res. Lett. 90, 491–502.

Zhu W., Tai K. S., Mousavi S. M., Bailis P., Beroza G. C. (2022). An end-to-end earthquake detection method for joint phase picking and association using deep learning. J. Geophys. Res. Solid Earth. 127, e2021JB023283.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...