Surface Modification of Metallic Inserts for Enhancing Adhesion at the Metal-Polymer Interface
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO (RP/CPS/2020/003)
Ministry of Education, Youth and Sports of the Czech Republic
IGA/FT/2021/010
Tomas Bata University in Zlín
PubMed
34833314
PubMed Central
PMC8624058
DOI
10.3390/polym13224015
PII: polym13224015
Knihovny.cz E-zdroje
A combination of mechanical and chemical treatments was utilized to modify the surface textures of copper and duralumin inserts in order to enhance the adhesion at the metal-polymer interface and provide an adhesive joint with a high loadbearing capacity. Pretreatment of the surfaces with sandblasting was followed by etching with various chemical mixtures. The resulting surface textures were evaluated with a scanning electron microscope (SEM) and an optical confocal microscope. Surface geometry parameters (Sa, Sz, and Sdr) were measured and their relationships to the adhesion joint strength were studied. It was found that the virgin and purely mechanically treated inserts resulted in joints with poor loadbearing capacity, while a hundredfold (duralumin) and ninetyfold (copper) increase in the force to break was observed for some combinations of mechanical and chemical treatments. It was determined that the critical factor is overcoming a certain surface roughness threshold with the mechanical pretreatment to maximize the potential of the mechanical/chemical approach for the particular combination of material and etchant.
Zobrazit více v PubMed
Zoellner O.J., Evans J.A. Plastic-metal hybrid. A new development in the injection molding technology; Proceedings of the ANTEC 2002 Annual Technical Conference; San Francisco, CA, USA. 5–9 May 2002; pp. 1–4.
Grujicic M., Sellappan V., Omar M.A., Seyr N., Obieglo A., Erdmann M., Holzleitner J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process. Technol. 2008;197:363–373. doi: 10.1016/j.jmatprotec.2007.06.058. DOI
Pinpathomrat B., Mathurosemontri S., Uawongsuwan P., Thumsorn S., Hamada H. Study on Adhesive Property of Insert Injection Molded Glass Fiber Reinforced Polypropylene Composites. Energy Procedia. 2016;89:291–298. doi: 10.1016/j.egypro.2016.05.037. DOI
Kajihara Y., Tamura Y., Kimura F., Suzuki G., Nakura N., Yamaguchi E. Joining strength dependence on molding conditions and surface textures in blast-assisted metal-polymer direct joining. CIRP Ann. 2018;67:591–594. doi: 10.1016/j.cirp.2018.04.112. DOI
Gebhardt J., Fleischer J. Experimental Investigation and Performance Enhancement of Inserts in Composite Parts. Procedia CIRP. 2014;23:7–12. doi: 10.1016/j.procir.2014.10.084. DOI
Bonpain B., Stommel M. Influence of surface roughness on the shear strength of direct injection molded plastic-aluminum hybrid-parts. Int. J. Adhes. Adhes. 2018;82:290–298. doi: 10.1016/j.ijadhadh.2018.02.003. DOI
Saleema N., Sarkar D.K., Paynter R.W., Gallant D., Eskandarian M. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Appl. Surf. Sci. 2012;261:742–748. doi: 10.1016/j.apsusc.2012.08.091. DOI
Prolongo S.G., Urena A. Effect of surface pre-treatment on the adhesive strength of epoxy-aluminium joints. Int. J. Adhes. Adhes. 2009;29:23–31. doi: 10.1016/j.ijadhadh.2008.01.001. DOI
Leena K., Athira K.K., Bhuvaneswari S., Suraj S., Rao V.L. Effect of surface pre-treatment on surface characteristics and adhesive bond strength of aluminium alloy. Int. J. Adhes. Adhes. 2016;70:265–270. doi: 10.1016/j.ijadhadh.2016.07.012. DOI
Kadleckova M., Minarik A., Smolka P., Mracek A., Wrzecionko E., Novak L., Musilova L., Gajdosik R. Preparation of Textured Surfaces on Aluminum-Alloy Substrates. Materials. 2019;12:109. doi: 10.3390/ma12010109. PubMed DOI PMC
Heinz A., Haszler A., Keidel C., Moldenhauer S., Benedictus R., Miller W.S. Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2000;280:102–107. doi: 10.1016/S0921-5093(99)00674-7. DOI
Du Y.J., Damron M., Tang G., Zheng H.X., Chu C.J., Osborne J.H. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates. Prog. Org. Coat. 2001;41:226–232.
Boutar Y., Naimi S., Mezlini S., Ali M.B. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications. Int. J. Adhes. Adhes. 2016;67:38–43. doi: 10.1016/j.ijadhadh.2015.12.023. DOI
Borsellino C., Di Bella G., Ruisi V.F. Adhesive joining of aluminium AA6082: The effects of resin and surface treatment. Int. J. Adhes. Adhes. 2009;29:36–44. doi: 10.1016/j.ijadhadh.2008.01.002. DOI
Li X., Gong N., Yang C., Zeng S., Fu S., Zhang K. Aluminum/polypropylene composites produced through injection molding. J. Mater. Process. Technol. 2018;255:635–643. doi: 10.1016/j.jmatprotec.2018.01.008. DOI
Seo J.S., Shin S.Y. Rheological approach to the adhesion property of metal-plated acrylonitrile-butadiene-styrene to secure the driver’s safety. J. Appl. Polym. Sci. 2021;e51735 doi: 10.1002/app.51735. DOI
Cuc S., Burde A., Cosma C., Leordean D., Rusu M., Balc N., Prodan D., Moldovan M., Ene R. Adhesion between Biocomposites and Different Metallic Structures Additive Manufactured. Coatings. 2021;11:483. doi: 10.3390/coatings11040483. DOI
Shanmugam L., Kazemi M.E., Qiu C., Rui M., Yang L., Yang J. Influence of UHMWPE fiber and Ti6Al4V metal surface treatments on the low-velocity impact behavior of thermoplastic fiber metal laminates. Adv. Compos. Hybrid Mater. 2020;3:508–521. doi: 10.1007/s42114-020-00189-7. DOI
Zhuang J., Sun J., Wu D., Liu Y., Patil R.R., Pan D., Guo Z. Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger. Adv. Compos. Hybrid Mater. 2021;4:27–35. doi: 10.1007/s42114-021-00204-5. DOI
Liu Y.D., Shigemoto Y., Hanada T., Miyamae T., Kawasaki K., Horiuchi S. Role of Chemical Functionality in the Adhesion of Aluminum and Isotactic Polypropylene. Acs Appl. Mater. Interfaces. 2021;13:11497–11506. doi: 10.1021/acsami.0c22988. PubMed DOI
Aver’yanova I.O., Bogomolov D.Y., Poroshin V.V. ISO 25178 standard for three-dimensional parametric assessment of surface texture. Russ. Eng. Res. 2017;37:513–516. doi: 10.3103/S1068798X17060053. DOI
ISO 16610-61:2015: Geometrical Product Specifications (GPS), Filtration. Part 61: Linear Areal Filters: Gaussian Filters. International Organization for Standardization; Geneva, Switzerland: 2015.
ISO/R 468: Surface Roughness: Parameters, Their Values and General Rules for Specifying Requirements. International Organization for Standardization; Geneva, Switzerland: 1982.
ISO 25178-2:2012: Geometric Product Specification (GPS). Surface Texture: Areal. Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 2012.
GOST . GOST (State Standard) 2789-73: Surface Roughness. Parameters and Characteristics. Izd. Standartov; Moscow, Russia: 1975.
ISO 4287:1997: Geometric Product Specification (GPS). Surface Texture Profile Method: Terms, Definition and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 1997.
Grzesik W. Advanced Machining Processes of Metallic Materials—Theory, Modelling and Applications. Elsevier; Amsterdam, The Netherlands: 2017. 20.1 Superficial Layer and Surface Integrity; pp. 405–407.
Giese V.M. Adhäsive Kunststoff-Metall-und Kunststoff-Kunststoff-Verbindungen im Hinblick auf die Spritzgussverarbeitung. Friedrich-Alexander-Universität; Erlangen-Nürnberg, Germany: 1995.