Cross-Linking Effects Dictate the Preference of Galectins to Bind LacNAc-Decorated HPMA Copolymers

. 2021 Jun 01 ; 22 (11) : . [epub] 20210601

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34206141

Grantová podpora
788143 H2020 European Research Council
RTI2018-094751-B-C21 Agencia Estatal de Investigación
RTI2018-095700-B-I00 Agencia Estatal de Investigación
SEV-2016-0644 Agencia Estatal de Investigación
PRE_2018_1_0102 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
LTC19038 and LTC18041 Ministerstvo Školství, Mládeže a Tělovýchovy
CA17140 and CA16225 European Cooperation in Science and Technology
RP10-Molecules and Materials for Life Akademie Věd České Republiky

The interaction of multi-LacNAc (Galβ1-4GlcNAc)-containing N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers with human galectin-1 (Gal-1) and the carbohydrate recognition domain (CRD) of human galectin-3 (Gal-3) was analyzed using NMR methods in addition to cryo-electron-microscopy and dynamic light scattering (DLS) experiments. The interaction with individual LacNAc-containing components of the polymer was studied for comparison purposes. For Gal-3 CRD, the NMR data suggest a canonical interaction of the individual small-molecule bi- and trivalent ligands with the lectin binding site and better affinity for the trivalent arrangement due to statistical effects. For the glycopolymers, the interaction was stronger, although no evidence for forming a large supramolecule was obtained. In contrast, for Gal-1, the results indicate the formation of large cross-linked supramolecules in the presence of multivalent LacNAc entities for both the individual building blocks and the polymers. Interestingly, the bivalent and trivalent presentation of LacNAc in the polymer did not produce such an increase, indicating that the multivalency provided by the polymer is sufficient for triggering an efficient binding between the glycopolymer and Gal-1. This hypothesis was further demonstrated by electron microscopy and DLS methods.

Zobrazit více v PubMed

Laaf D., Bojarová P., Elling L., Křen V. Galectin–Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol. 2019;37:402–415. doi: 10.1016/j.tibtech.2018.10.001. PubMed DOI

Ebrahim A.H., Alalawi Z., Mirandola L., Rakhshanda R., Dahlbeck S., Nguyen D., Jenkins M., Grizzi F., Cobos E., Figueroa J.A., et al. Galectins in cancer: Carcinogenesis, diagnosis and therapy. Ann. Transl. Med. 2014;2:88. doi: 10.3978/j.issn.2305-5839.2014.09.12. PubMed DOI PMC

Cousin J., Cloninger M. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int. J. Mol. Sci. 2016;17:1566. doi: 10.3390/ijms17091566. PubMed DOI PMC

Nangia-Makker P., Balan V., Raz A. Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron. 2008;1:43–51. doi: 10.1007/s12307-008-0003-6. PubMed DOI PMC

Dings R., Miller M., Griffin R., Mayo K. Galectins as Molecular Targets for Therapeutic Intervention. Int. J. Mol. Sci. 2018;19:905. doi: 10.3390/ijms19030905. PubMed DOI PMC

Stillman B.N., Hsu D.K., Pang M., Brewer C.F., Johnson P., Liu F.-T., Baum L.G. Galectin-3 and Galectin-1 Bind Distinct Cell Surface Glycoprotein Receptors to Induce T Cell Death. J. Immunol. 2006;176:778–789. doi: 10.4049/jimmunol.176.2.778. PubMed DOI

Girard A., Magnani J.L. Clinical Trials and Applications of Galectin Antagonists. Trends Glycosci. Glycotechnol. 2018;30:211–220. doi: 10.4052/tigg.1744.1SE. DOI

Bertuzzi S., Quintana J.I., Ardá A., Gimeno A., Jiménez-Barbero J. Targeting Galectins with Glycomimetics. Front. Chem. 2020;8:593. doi: 10.3389/fchem.2020.00593. PubMed DOI PMC

Rabinovich G.A., Cumashi A., Bianco G.A., Ciavardelli D., Iurisci I., D’Egidio M., Piccolo E., Tinari N., Nifantiev N., Iacobelli S. Synthetic lactulose amines: Novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis. Glycobiology. 2006;16:210–220. doi: 10.1093/glycob/cwj056. PubMed DOI

Laaf D., Steffens H., Pelantová H., Bojarová P., Křen V., Elling L. Chemo-Enzymatic Synthesis of Branched N-Acetyllactosamine Glycan Oligomers for Galectin-3 Inhibition. Adv. Synth. Catal. 2017;359:4015–4024. doi: 10.1002/adsc.201700969. DOI

Laaf D., Bojarová P., Pelantová H., Křen V., Elling L. Tailored Multivalent Neo-Glycoproteins: Synthesis, Evaluation, and Application of a Library of Galectin-3-Binding Glycan Ligands. Bioconjug. Chem. 2017;28:2832–2840. doi: 10.1021/acs.bioconjchem.7b00520. PubMed DOI

Zhang H., Laaf D., Elling L., Pieters R.J. Thiodigalactoside-Bovine Serum Albumin Conjugates as High-Potency Inhibitors of Galectin-3: An Outstanding Example of Multivalent Presentation of Small Molecule Inhibitors. Bioconjug. Chem. 2018;29:1266–1275. doi: 10.1021/acs.bioconjchem.8b00047. PubMed DOI PMC

Soomro Z.H., Cecioni S., Blanchard H., Praly J.P., Imberty A., Vidal S., Matthews S.E. CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins. Org. Biomol. Chem. 2011;9:6587–6597. doi: 10.1039/c1ob05676j. PubMed DOI

Sakamoto J.I., Koyama T., Miyamoto D., Yingsakmongkon S., Hidari K.I.P.J., Jampangern W., Suzuki T., Suzuki Y., Esumi Y., Hatano K., et al. Thiosialoside clusters using carbosilane dendrimer core scaffolds as a new class of influenza neuraminidase inhibitors. Bioorg. Med. Chem. Lett. 2007;17:717–721. doi: 10.1016/j.bmcl.2006.10.085. PubMed DOI

Nagahori N., Nishimura S.-I. Direct and Efficient Monitoring of Glycosyltransferase Reactions on Gold Colloidal Nanoparticles by Using Mass Spectrometry. Chem. Eur. J. 2006;12:6478–6485. doi: 10.1002/chem.200501267. PubMed DOI

Heine V., Hovorková M., Vlachová M., Filipová M., Bumba L., Janoušková O., Hubálek M., Cvačka J., Petrásková L., Pelantová H., et al. Immunoprotective neo-glycoproteins: Chemoenzymatic synthesis of multivalent glycomimetics for inhibition of cancer-related galectin-3. Eur. J. Med. Chem. 2021;220:113500. doi: 10.1016/j.ejmech.2021.113500. PubMed DOI

Gimeno A., Delgado S., Valverde P., Bertuzzi S., Berbís M.A., Echavarren J., Lacetera A., Martín-Santamaría S., Surolia A., Cañada F.J., et al. Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Blood-Group Antigens by Human Galectin-3. Angew. Chem. Int. Ed. 2019;58:7268–7272. doi: 10.1002/anie.201900723. PubMed DOI PMC

Bertuzzi S., Gimeno A., Núñez-Franco R., Bernardo-Seisdedos G., Delgado S., Jiménez-Osés G., Millet O., Jiménez-Barbero J., Ardá A. Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectin-1. Chem. Eur. J. 2020;26:15643–15653. doi: 10.1002/chem.202003212. PubMed DOI PMC

Ardá A., Jiménez-Barbero J. The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chem. Commun. 2018;54:4761–4769. doi: 10.1039/C8CC01444B. PubMed DOI

Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI

Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018;18:1700209. doi: 10.1002/mabi.201700209. PubMed DOI

Filipová M., Bojarová P., Rodrigues Tavares M., Bumba L., Elling L., Chytil P., Gunár K., Křen V., Etrych T., Janoušková O. Glycopolymers for Efficient Inhibition of Galectin-3: In Vitro Proof of Efficacy Using Suppression of T Lymphocyte Apoptosis and Tumor Cell Migration. Biomacromolecules. 2020;21:3122–3133. doi: 10.1021/acs.biomac.0c00515. PubMed DOI

Bojarová P., Tavares M.R., Laaf D., Bumba L., Petrásková L., Konefał R., Bláhová M., Pelantová H., Elling L., Etrych T., et al. Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J. Nanobiotechnol. 2018;16:73. doi: 10.1186/s12951-018-0399-1. PubMed DOI PMC

Tavares M.R., Bláhová M., Sedláková L., Elling L., Pelantová H., Konefał R., Etrych T., Křen V., Bojarová P., Chytil P. High-Affinity N-(2-Hydroxypropyl) methacrylamide Copolymers with Tailored N-Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules. 2020;21:641–652. doi: 10.1021/acs.biomac.9b01370. PubMed DOI

Bojarová P., Kulik N., Hovorková M., Slámová K., Pelantová H., Křen V. The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules. 2019;24:599. doi: 10.3390/molecules24030599. PubMed DOI PMC

Mészáros Z., Nekvasilová P., Bojarová P., Křen V., Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol. Adv. 2021;49:107733. doi: 10.1016/j.biotechadv.2021.107733. PubMed DOI

Gimeno A., Valverde P., Ardá A., Jiménez-Barbero J. Glycan structures and their interactions with proteins. A NMR view. Curr. Opin. Struct. Biol. 2020;62:22–30. doi: 10.1016/j.sbi.2019.11.004. PubMed DOI PMC

Mayer M., Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 1999;38:1784–1788. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q. PubMed DOI

Meyer B., Peters T. NMR Spectroscopy Techniques for Screening and Identifying Ligand Binding to Protein Receptors. Angew. Chem. Int. Ed. 2003;42:864–890. doi: 10.1002/anie.200390233. PubMed DOI

Viegas A., Manso J., Nobrega F.L., Cabrita E.J. Saturation-transfer difference (STD) NMR: A simple and fast method for ligand screening and characterization of protein binding. J. Chem. Educ. 2011;88:990–994. doi: 10.1021/ed101169t. DOI

Williamson M.P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 2013;73:1–16. doi: 10.1016/j.pnmrs.2013.02.001. PubMed DOI

Šubr V., Ulbrich K. Synthesis and properties of new N-(2-hydroxypropyl) methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 2006;66:1525–1538. doi: 10.1016/j.reactfunctpolym.2006.05.002. DOI

Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl) methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Bumba L., Laaf D., Spiwok V., Elling L., Křen V., Bojarová P. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int. J. Mol. Sci. 2018;19:372. doi: 10.3390/ijms19020372. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace