Effect of substituents at the C3´, C3´N, C10 and C2-meta-benzoate positions of taxane derivatives on their activity against resistant cancer cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 CA103314
NCI NIH HHS - United States
PubMed
38870637
PubMed Central
PMC11257372
DOI
10.1016/j.taap.2024.116993
PII: S0041-008X(24)00191-1
Knihovny.cz E-zdroje
- Klíčová slova
- C10 taxane derivatives, C2 taxane derivatives, C3´ and C3´N taxane derivatives, Resistant breast cancer cells, Resistant ovarian cancer cells,
- MeSH
- antitumorózní látky farmakologie chemie MeSH
- benzoáty farmakologie chemie MeSH
- chemorezistence * účinky léků MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nádory prsu farmakoterapie patologie MeSH
- nádory vaječníků farmakoterapie patologie MeSH
- P-glykoproteiny * metabolismus genetika MeSH
- paclitaxel farmakologie MeSH
- taxoidy farmakologie chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABCB1 protein, human MeSH Prohlížeč
- antitumorózní látky MeSH
- benzoáty MeSH
- P-glykoproteiny * MeSH
- paclitaxel MeSH
- taxoidy MeSH
We tested the effect of substituents at the (1) C3´, C3´N, (2) C10, and (3) C2-meta-benzoate positions of taxane derivatives on their activity against sensitive versus counterpart paclitaxel-resistant breast (MCF-7) and ovarian (SK-OV-3) cancer cells. We found that (1) non-aromatic groups at both C3´ and C3´N positions, when compared with phenyl groups at the same positions of a taxane derivative, significantly reduced the resistance of ABCB1 expressing MCF-7/PacR and SK-OV-3/PacR cancer cells. This is, at least in the case of the SB-T-1216 series, accompanied by an ineffective decrease of intracellular levels in MCF-7/PacR cells. The low binding affinity of SB-T-1216 in the ABCB1 binding cavity can elucidate these effects. (2) Cyclopropanecarbonyl group at the C10 position, when compared with the H atom, seems to increase the potency and capability of the derivative in overcoming paclitaxel resistance in both models. (3) Derivatives with fluorine and methyl substituents at the C2-meta-benzoate position were variously potent against sensitive and resistant cancer cells. All C2 derivatives were less capable of overcoming acquired resistance to paclitaxel in vitro than non-substituted analogs. Notably, fluorine derivatives SB-T-121205 and 121,206 were more potent against sensitive and resistant SK-OV-3 cells, and derivatives SB-T-121405 and 121,406 were more potent against sensitive and resistant MCF-7 cells. (4) The various structure-activity relationships of SB-T derivatives observed in two cell line models known to express ABCB1 favor their complex interaction not based solely on ABCB1.
Zobrazit více v PubMed
Alam A, Kowal J, Broude E, Roninson I, and Locher KP (2019). Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363, 753–756. PubMed PMC
Alli E, Yang JM, Ford JM, and Hait WN (2007). Reversal of stathmin-mediated resistance to paclitaxel and vinblastine in human breast carcinoma cells. Mol Pharmacol 71, 1233–1240. PubMed
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, and Bourne PE (2000). The Protein Data Bank. Nucleic Acids Res 28, 235–242. PubMed PMC
Brooks TA, Minderman H, O’Loughlin KL, Pera P, Ojima I, Baer MR, and Bernacki RJ (2003). Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Mol Cancer Ther 2, 1195–1205. PubMed
Cermak V, Dostal V, Jelinek M, Libusova L, Kovar J, Rosel D, and Brabek J (2020). Microtubule-targeting agents and their impact on cancer treatment. Eur J Cell Biol 99, 151075. PubMed
Daniel P, Halada P, Jelinek M, Balusikova K, and Kovar J (2019). Differentially Expressed Mitochondrial Proteins in Human MCF7 Breast Cancer Cells Resistant to Paclitaxel. Int J Mol Sci 20. PubMed PMC
Das T, Anand U, Pandey SK, Ashby CR Jr., Assaraf YG, Chen ZS, and Dey A (2021). Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 55, 100754. PubMed
Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, et al. (2006). Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12, 1317–1324. PubMed
Dranitsaris G, Yu B, King J, Kaura S, and Zhang A (2015). Nab-paclitaxel, docetaxel, or solvent-based paclitaxel in metastatic breast cancer: a cost-utility analysis from a Chinese health care perspective. Clinicoecon Outcomes Res 7, 249–256. PubMed PMC
Eberhardt J, Santos-Martins D, Tillack AF, and Forli S (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model 61, 3891–3898. PubMed PMC
Ehrlichova M, Vaclavikova R, Ojima I, Pepe A, Kuznetsova LV, Chen J, Truksa J, Kovar J, and Gut I (2005). Transport and cytotoxicity of paclitaxel, docetaxel, and novel taxanes in human breast cancer cells. Naunyn Schmiedebergs Arch Pharmacol 372, 95–105. PubMed
Ferlini C, Distefano M, Pignatelli F, Lin S, Riva A, Bombardelli E, Mancuso S, Ojima I, and Scambia G (2000). Antitumour activity of novel taxanes that act at the same time as cytotoxic agents and P-glycoprotein inhibitors. Br J Cancer 83, 1762–1768. PubMed PMC
Fojo AT, and Menefee M (2005). Microtubule targeting agents: basic mechanisms of multidrug resistance (MDR). Semin Oncol 32, S3–8. PubMed
Forsyth PA, Balmaceda C, Peterson K, Seidman AD, Brasher P, and DeAngelis LM (1997). Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J Neurooncol 35, 47–53. PubMed
Guenard D, Gueritte-Voegelein F, Dubois J, and Potier P (1993). Structure-activity relationships of Taxol and Taxotere analogues. J Natl Cancer Inst Monogr, 79–82. PubMed
Horwitz SB (2004). Personal recollections on the early development of taxol. J Nat Prod 67, 136–138. PubMed
Jelinek M, Balusikova K, Daniel P, Nemcova-Furstova V, Kirubakaran P, Jacek M, Wei L, Wang X, Vondrasek J, Ojima I, et al. (2018). Substituents at the C3’ and C3’N positions are critical for taxanes to overcome acquired resistance of cancer cells to paclitaxel. Toxicol Appl Pharmacol 347, 79–91. PubMed PMC
Jelinek M, Balusikova K, Schmiedlova M, Nemcova-Furstova V, Sramek J, Stancikova J, Zanardi I, Ojima I, and Kovar J (2015). The role of individual caspases in cell death induction by taxanes in breast cancer cells. Cancer Cell Int 15, 8. PubMed PMC
Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, and Horwitz SB (1997). Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100, 1282–1293. PubMed PMC
Kim SC, Yu J, Lee JW, Park ES, and Chi SC (2005). Sensitive HPLC method for quantitation of paclitaxel (Genexol in biological samples with application to preclinical pharmacokinetics and biodistribution. J Pharm Biomed Anal 39, 170–176. PubMed
Lei L, Wang XJ, and Tang SC (2022). Novel taxanes in development: Hopes or hypes? Crit Rev Oncol Hematol 176, 103727. PubMed
Lomize MA, Pogozheva ID, Joo H, Mosberg HI, and Lomize AL (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370–376. PubMed PMC
Maloney SM, Hoover CA, Morejon-Lasso LV, and Prosperi JR (2020). Mechanisms of Taxane Resistance. Cancers (Basel) 12. PubMed PMC
Murray S, Briasoulis E, Linardou H, Bafaloukos D, and Papadimitriou C (2012). Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 38, 890–903. PubMed
Neese F, Wennmohs F, Becker U, and Riplinger C (2020). The ORCA quantum chemistry program package. J Chem Phys 152, 224108. PubMed
Nemcova-Furstova V, Kopperova D, Balusikova K, Ehrlichova M, Brynychova V, Vaclavikova R, Daniel P, Soucek P, and Kovar J (2016). Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol Appl Pharmacol 310, 215–228. PubMed
Ojima I, Bounaud PY, Takeuchi C, Pera P, and Bernacki RJ (1998). New taxanes as highly efficient reversal agents for multidrug resistance in cancer cells. Bioorg Med Chem Lett 8, 189–194. PubMed
Ojima I, Chen J, Sun L, Borella CP, Wang T, Miller ML, Lin S, Geng X, Kuznetsova L, Qu C, et al. (2008). Design, synthesis, and biological evaluation of new-generation taxoids. J Med Chem 51, 3203–3221. PubMed PMC
Ojima I, Duclos O, Kuduk SD, Sun CM, Slater JC, Lavelle F, Veith JM, and Bernacki RJ (1994a). Synthesis and Biological-Activity of 3’-Alkyl-3’-Dephenyldocetaxel and 3’-Alkenyl-3’-Dephenyldocetaxel. Bioorg Med Chem Lett 4, 2631–2634.
Ojima I, Duclos O, Zucco M, Bissery MC, Combeau C, Vrignaud P, Riou JF, and Lavelle F (1994b). Synthesis and structure-activity relationships of new antitumor taxoids. Effects of cyclohexyl substitution at the C-3’ and/or C-2 of taxotere (docetaxel). J Med Chem 37, 2602–2608. PubMed
Ojima I, Lin S, Slater JC, Wang T, Pera P, Bernacki RJ, Ferlini C, and Scambia G (2000). Syntheses and biological activity of C-3’-difluoromethyl-taxoids. Bioorg Med Chem 8, 1619–1628. PubMed
Ojima I, Slater JC, Kuduk SD, Takeuchi CS, Gimi RH, Sun CM, Park YH, Pera P, Veith JM, and Bernacki RJ (1997). Syntheses and structure-activity relationships of taxoids derived from 14 beta-hydroxy-10-deacetylbaccatin III. J Med Chem 40, 267–278. PubMed
Ojima I, Slater JC, Michaud E, Kuduk SD, Bounaud PY, Vrignaud P, Bissery MC, Veith JM, Pera P, and Bernacki RJ (1996). Syntheses and structure-activity relationships of the second-generation antitumor taxoids: exceptional activity against drug-resistant cancer cells. J Med Chem 39, 3889–3896. PubMed
Ojima I, Wang X, Jing Y, and Wang C (2018). Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery. J Nat Prod 81, 703–721. PubMed PMC
Ojima I K. A; Seitz JD (2014). Taxol, Taxoids, and Related Taxanes. In Methods and Principles in Medicinal Chemistry. Hanessian S, ed.
Ojima I, Borella CP, Wu X, Bounaud PY, Oderda CF, Sturm M, Miller ML, Chakravarty S, Chen J, Huang Q, Pera P, Brooks TA, Baer MR and Bernacki RJ (2005). Design, synthesis and structure-activity relationships of novel taxane-based multidrug resistance reversal agents. J Med Chem 48,2218–2228. PubMed
Orr GA, Verdier-Pinard P, McDaid H, and Horwitz SB (2003). Mechanisms of Taxol resistance related to microtubules. Oncogene 22, 7280–7295. PubMed PMC
Paller CJ, and Antonarakis ES (2011). Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des Devel Ther 5, 117–124. PubMed PMC
Sanner MF (1999). Python: a programming language for software integration and development. J Mol Graph Model 17, 57–61. PubMed
Schaftenaar G, Vlieg E, and Vriend G (2017). Molden 2.0: quantum chemistry meets proteins. J Comput Aided Mol Des 31, 789–800. PubMed PMC
Schrödinger DeLano., W. (2020). PyMOL. http://www.pymol.org/pymol
Seborova K, Koucka K, Spalenkova A, Holy P, Ehrlichova M, Sychra T, Chen L, Bendale H, Ojima I, Sandoval-Acuna C, et al. (2022). Anticancer regimens containing third generation taxanes SB-T-121605 and SB-T-121606 are highly effective in resistant ovarian carcinoma model. Front Pharmacol 13, 971905. PubMed PMC
Smoter M, Bodnar L, Duchnowska R, Stec R, Grala B, and Szczylik C (2011). The role of Tau protein in resistance to paclitaxel. Cancer Chemother Pharmacol 68, 553–557. PubMed PMC
Sun R, Liu Z, Wang L, Lv W, Liu J, Ding C, Yuan Y, Lei G, and Xu C (2015). Overexpression of stathmin is resistant to paclitaxel treatment in patients with non-small cell lung cancer. Tumour Biol 36, 7195–7204. PubMed
Trott O, and Olson AJ (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455–461. PubMed PMC
UniProt C (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res 51, D523–D531. PubMed PMC
Wang C, Wang X, Sun Y, Taouil AK, Yan S, Botchkina GI, and Ojima I (2020). Design, synthesis and SAR study of 3rd-generation taxoids bearing 3-CH(3), 3-CF(3)O and 3-CHF(2)O groups at the C2-benzoate position. Bioorg Chem 95, 103523. PubMed PMC
Wani MC, and Horwitz SB (2014). Nature as a remarkable chemist: a personal story of the discovery and development of Taxol. Anticancer Drugs 25, 482–487. PubMed PMC
Wani MC, Taylor HL, Wall ME, Coggon P, and McPhail AT (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93, 2325–2327. PubMed
Woods CM, Zhu J, McQueney PA, Bollag D, and Lazarides E (1995). Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol Med 1, 506–526. PubMed PMC