C10 taxane derivatives Dotaz Zobrazit nápovědu
We tested the effect of substituents at the (1) C3 ́, C3 ́N, (2) C10, and (3) C2-meta-benzoate positions of taxane derivatives on their activity against sensitive versus counterpart paclitaxel-resistant breast (MCF-7) and ovarian (SK-OV-3) cancer cells. We found that (1) non-aromatic groups at both C3 ́ and C3 ́N positions, when compared with phenyl groups at the same positions of a taxane derivative, significantly reduced the resistance of ABCB1 expressing MCF-7/PacR and SK-OV-3/PacR cancer cells. This is, at least in the case of the SB-T-1216 series, accompanied by an ineffective decrease of intracellular levels in MCF-7/PacR cells. The low binding affinity of SB-T-1216 in the ABCB1 binding cavity can elucidate these effects. (2) Cyclopropanecarbonyl group at the C10 position, when compared with the H atom, seems to increase the potency and capability of the derivative in overcoming paclitaxel resistance in both models. (3) Derivatives with fluorine and methyl substituents at the C2-meta-benzoate position were variously potent against sensitive and resistant cancer cells. All C2 derivatives were less capable of overcoming acquired resistance to paclitaxel in vitro than non-substituted analogs. Notably, fluorine derivatives SB-T-121205 and 121,206 were more potent against sensitive and resistant SK-OV-3 cells, and derivatives SB-T-121405 and 121,406 were more potent against sensitive and resistant MCF-7 cells. (4) The various structure-activity relationships of SB-T derivatives observed in two cell line models known to express ABCB1 favor their complex interaction not based solely on ABCB1.
- MeSH
- antitumorózní látky farmakologie chemie MeSH
- benzoáty farmakologie chemie MeSH
- chemorezistence * účinky léků MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nádory prsu farmakoterapie patologie MeSH
- nádory vaječníků farmakoterapie patologie MeSH
- P-glykoproteiny * metabolismus genetika MeSH
- paclitaxel farmakologie MeSH
- taxoidy farmakologie chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH