HPMA copolymer
Dotaz
Zobrazit nápovědu
Treatment of murine EL4 T cell lymphoma with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates of doxorubicin (Dox) leads to complete tumor regression and to the development of therapy-dependent longlasting cancer resistance. This phenomenon occurs with two types of Dox conjugates tested, despite differences in the covalent linkage of Dox to the polymer carrier. Such a cancer resistance cannot fully express in conventional treatment with free Dox, due to substantial immunotoxicity of the treatment, which was not observed in the polymer conjugates. In this study, calreticulin (CRT) translocation and high mobility group box-1 protein (HMGB1) release was observed in EL4 cells treated with a conjugate releasing Dox by a pH-dependent manner. As a result, the treated tumor cells were engulfed by dendritic cells (DC) in vitro, and induced their expression of CD80, CD86, and MHC II maturation markers. Conjugates with Dox bound via an amide bond only increased translocation of HSPs to the membrane, which led to an elevated phagocytosis but was not sufficient to induce increase of the maturation markers on DCs in vitro. Both types of conjugates induced engulfment of the target tumor cells in vivo, that was more intense than that seen with free Dox. It means that the induction of anti-tumor immunity documented upon treatment of EL4 lymphoma with HPMA-bound Dox conjugates does not rely solely on CRT-mediated cell death, but involves multiple mechanisms.
- MeSH
- antigeny CD80 metabolismus MeSH
- antigeny CD86 metabolismus MeSH
- apoptóza účinky léků MeSH
- chemorezistence účinky léků MeSH
- dendritické buňky cytologie imunologie MeSH
- doxorubicin aplikace a dávkování analogy a deriváty chemie toxicita MeSH
- fagocytóza MeSH
- kalretikulin metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kyseliny polymethakrylové aplikace a dávkování chemie toxicita MeSH
- lymfom T-buněčný farmakoterapie imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nosiče léků chemie MeSH
- protein HMGB1 metabolismus MeSH
- proteiny teplotního šoku metabolismus MeSH
- protinádorové látky aplikace a dávkování chemie toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Synthesis and characterization of N-(2-hydroxypropyl)methacrylamide (HPMA)-copolymer-based drug carriers targeted on specific receptors in the membrane of endothelial cells by oligopeptides (GRGDG, cyclo(RGDfK), and PHSCN) are described in this study. The copolymers containing targeting oligopeptides bound to the polymer via dodeca(ethylene glycol) spacer showed a receptor-specific time-dependent uptake with selected endothelial cell lines. The polymers were labeled with a fluorescent dye to enable monitoring of the interaction of the polymer conjugate with cells using fluorescence microscopy. Cellular uptake and apoptosis induction have been studied in vitro using various cell lines (EA.hy926, 3T3, SW620, and EL4). In vivo accumulation of the conjugate specifically targeted with cyclo(RGDfK) within the tumor vasculature was detected using fluorescence intravital microscopy in mice. The conjugate targeted by cyclo(RGDfK) was accumulated preferentially in the periphery of the growing tumor suggesting that the cyclo(RGDfK) peptide targets the polymer conjugate to the site of neoangiogenesis, rather than to the tumor mass.
- MeSH
- akrylamidy chemie MeSH
- apoptóza účinky léků MeSH
- buněčné linie MeSH
- časové faktory MeSH
- cévní endotel metabolismus patologie MeSH
- fluorescenční mikroskopie MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie patologie MeSH
- oligopeptidy aplikace a dávkování farmakokinetika chemická syntéza MeSH
- patologická angiogeneze MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
BACKGROUND: Galectin-3 (Gal-3) is a promising target in cancer therapy with a high therapeutic potential due to its abundant localization within the tumor tissue and its involvement in tumor development and proliferation. Potential clinical application of Gal-3-targeted inhibitors is often complicated by their insufficient selectivity or low biocompatibility. Nanomaterials based on N-(2-hydroxypropyl)methacrylamide (HPMA) nanocarrier are attractive for in vivo application due to their good water solubility and lack of toxicity and immunogenicity. Their conjugation with tailored carbohydrate ligands can yield specific glyconanomaterials applicable for targeting biomedicinally relevant lectins like Gal-3. RESULTS: In the present study we describe the synthesis and the structure-affinity relationship study of novel Gal-3-targeted glyconanomaterials, based on hydrophilic HPMA nanocarriers. HPMA nanocarriers decorated with varying amounts of Gal-3 specific epitope GalNAcβ1,4GlcNAc (LacdiNAc) were analyzed in a competitive ELISA-type assay and their binding kinetics was described by surface plasmon resonance. We showed the impact of various linker types and epitope distribution on the binding affinity to Gal-3. The synthesis of specific functionalized LacdiNAc epitopes was accomplished under the catalysis by mutant β-N-acetylhexosaminidases. The glycans were conjugated to statistic HPMA copolymer precursors through diverse linkers in a defined pattern and density using Cu(I)-catalyzed azide-alkyne cycloaddition. The resulting water-soluble and structurally flexible synthetic glyconanomaterials exhibited affinity to Gal-3 in low μM range. CONCLUSIONS: The results of this study reveal the relation between the linker structure, glycan distribution and the affinity of the glycopolymer nanomaterial to Gal-3. They pave the way to specific biomedicinal glyconanomaterials that target Gal-3 as a therapeutic goal in cancerogenesis and other disorders.
- MeSH
- akrylamidy chemie metabolismus MeSH
- galektin 3 metabolismus MeSH
- glykokonjugáty chemie metabolismus MeSH
- lékové transportní systémy * MeSH
- lidé MeSH
- nanostruktury chemie MeSH
- nosiče léků chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this paper we describe the synthesis, physicochemical characteristics and data on the biological activity of polymer prodrugs based on the anticancer drugs paclitaxel (PTX) and docetaxel (DTX) conjugated with a water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer drug carrier. The drugs were derivatized and then attached to the polymer backbone via a spacer that is stable under physiological conditions (pH 7.4) and hydrolytically degradable in mild acidic environments (e.g., endosomes, pH approximately 5). Polymer-drug conjugates were designed to achieve prolonged blood circulation and release of the active compound in target cells. Six types of conjugates differing in the structure of the keto acid (levulic, 3-(acetyl)acrylic acid) and 4-(2-oxopropyl)benzoic acid-containing spacer or in the amount of drug bound to the HPMA copolymer were synthesized. In all the conjugates, the linkage susceptible to hydrolytic cleavage was formed by the reaction of the carbonyl group of a drug derivative with the hydrazide group-terminated side chains of the polymer. In vitro incubation of the conjugates in buffers resulted in much faster release of drugs or their derivatives from the polymer at pH 5 than at pH 7.4 with the rate depending on the detailed structure of the spacer. Conjugates containing drugs acylated with levulic acid were tested for their anticancer activity in vivo using two murine models. The PTX-containing conjugate showed better antitumor efficacy in the 4T1 model of mammary carcinoma than the parent drug and its derivative. The DTX-containing conjugate demonstrated high activity in treating EL4 T cell lymphoma. The treatment with the polymer conjugates was devoid of side toxicity. In both models, we achieved complete regression of established tumors accompanied by a durable tumor resistance in most of the cured animals.
- MeSH
- koncentrace vodíkových iontů MeSH
- lymfom T-buněčný farmakoterapie MeSH
- methakryláty chemie MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- paclitaxel chemie farmakologie MeSH
- polymery chemická syntéza chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemie farmakologie MeSH
- taxoidy chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper reviews an early clinical experience with anthracycline (epirubicin; Epi or doxorubicin; Dox) containing an N-(2-hydroyxypropyl)methacrylamide copolymer carrier targeted with autologous or commercial human immunoglobulin in six patients aged 28-55 suffering from therapy-resistant metastatic cancer. More than 100 biochemical, hematological and immunological parameters, including nine tumor markers, were tested in blood samples taken 24 h after the first and up to 10 months after the last application. The intravenous application proceeded without serious adverse or side effects and did not require hospitalization. Cardiotoxicity was not observed. Four of six monitored patients attained stabilization of disease (liver ultrasound scan and bone computer tomography) with a very good quality of life lasting from seven up to 18 months. Positive response to the treatment was, among others, evaluated as decreased CA 15-3 and CEA tumor markers. In three of five tested patients the serum level of C-reactive protein was temporarily increased 72 h after the treatment. A stable or elevated number of peripheral blood reticulocytes together with activation of natural killer (NK) cells and lymphokine-activated killer (LAK) cells supports the data previously obtained in experimental animals pointing to a dual role, i.e. the cytotoxic and immunomobilizing character of doxorubicin-HPMA conjugates.
- MeSH
- akrylamidy MeSH
- chemorezistence MeSH
- dospělí MeSH
- doxorubicin analogy a deriváty aplikace a dávkování škodlivé účinky terapeutické užití MeSH
- epirubicin aplikace a dávkování škodlivé účinky terapeutické užití MeSH
- hemangiosarkom farmakoterapie MeSH
- imunoglobulin G aplikace a dávkování imunologie MeSH
- imunologické faktory aplikace a dávkování imunologie MeSH
- intravenózní imunoglobuliny aplikace a dávkování imunologie MeSH
- kvalita života MeSH
- kyseliny polymethakrylové aplikace a dávkování škodlivé účinky terapeutické užití MeSH
- lékové transportní systémy MeSH
- lidé středního věku MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádorové biomarkery krev MeSH
- nádory prsu farmakoterapie MeSH
- nosiče léků chemie MeSH
- protinádorová antibiotika aplikace a dávkování škodlivé účinky terapeutické užití MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Obstructed blood flow and erratic blood supply in the tumor region attenuate the distribution and accumulation of nanomedicines in the tumor. Therefore, improvement of these conditions is crucial for efficient drug delivery. In this study, we designed and synthesized a novel N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymer conjugate of BK, which possessed adequate systemic stability and tumor-selective action required to improve the accumulation of nanomedicines in the tumor. Levulinoyl-BK (Lev-BK) was conjugated to an HPMA-based polymer via an acid-cleavable hydrazone bond (P-BK). An acid-responsive release of Lev-BK from P-BK was observed, and P-BK alone after intradermal application showed below 10% of the BK activity, thus proving a reduction in the vascular permeability activity of BK when attached to the polymer carrier. P-BK pre-treatment improved blood flow in the tumor tissue by 1.4-1.7-fold, which was maintained for more than 4 h. In addition, P-BK pre-treatment increased the tumor accumulation of pegylated liposomal doxorubicin (PLD) by approximately 3-fold. Furthermore, P-BK pre-treatment led to superior antitumor activity of PLD and significantly improved the survival of tumor-bearing mice. The release of BK from P-BK in the acidic milieu of the tumor was a prerequisite for P-BK to exert its effect, as the vascular permeability enhancing activity of P-BK was negligible. Collectively, P-BK pre-treatment improved intratumoral blood flow and augmented tumor accumulation of nanomedicine, thereby resulting in a significant suppression of tumor growth. Therefore, these findings demonstrate that P-BK is a potential concomitant drug for improving the tumor delivery of nanomedicines.
- MeSH
- bradykinin terapeutické užití MeSH
- doxorubicin terapeutické užití MeSH
- methakryláty MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory * farmakoterapie MeSH
- nanomedicína MeSH
- nosiče léků terapeutické užití MeSH
- polymery terapeutické užití MeSH
- protinádorové látky * terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.
- MeSH
- amidy chemie MeSH
- antigeny CD43 metabolismus MeSH
- apoptóza MeSH
- doxorubicin analogy a deriváty farmakologie MeSH
- endoplazmatické retikulum metabolismus MeSH
- galektin 1 metabolismus MeSH
- glykosylace MeSH
- Golgiho aparát metabolismus MeSH
- kyseliny polymethakrylové farmakologie MeSH
- lymfom T-buněčný farmakoterapie metabolismus patologie MeSH
- myši MeSH
- nádorové buněčné linie účinky léků MeSH
- nosiče léků MeSH
- proliferace buněk MeSH
- protinádorová antibiotika farmakologie MeSH
- průtoková cytometrie MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study, we compared the enhanced permeability and retention (EPR) effect, toxicity, and therapeutic effect of the conjugate of the linear polymer poly(N-(2-hydroxypropyl)methacrylamide) (HPMA) with pirarubicin with an Mw below the renal threshold (39g/mol) (named LINEAR) and the disulfide-linked tandem-polymeric dimer of the poly(HPMA)-pirarubicin conjugate with an Mw above the renal threshold (93g/mol) (named DIBLOCK). The DIBLOCK conjugate, which was susceptible to reductive degradation, showed both a better EPR effect (tumor delivery) (2.5 times greater at 24h) and a prolonged plasma half-life. In addition, DIBLOCK had a better antitumor effect, as judged by percent survival, than did LINEAR (80% vs 65% at 150days), without any apparent toxicity in an S180 tumor model. However, the LD50 value of LINEAR was slightly higher than that of DIBLOCK (50mg/kg vs 37.5mg/kg, respectively). DIBLOCK required a longer time than LINEAR to reach maximum accumulation in the tumor. DIBLOCK also showed a greater time-dependent increase in the concentration in the tumor compared with the plasma concentration.
- MeSH
- biologická dostupnost MeSH
- biologický transport MeSH
- doxorubicin škodlivé účinky analogy a deriváty chemie farmakologie MeSH
- kyseliny polymethakrylové chemická syntéza MeSH
- lidé MeSH
- molekulová hmotnost MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nosiče léků chemická syntéza MeSH
- poločas MeSH
- protinádorové látky škodlivé účinky chemie farmakologie MeSH
- renální reabsorpce MeSH
- tkáňová distribuce MeSH
- uvolňování léčiv MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
We have developed a tumor environment-responsive polymeric anticancer prodrug containing pirarubicin (THP) conjugated to N-(2-hydroxypropyl) methacrylamide copolymer (PHPMA), [P-THP], through a spacer containing pH-sensitive hydrazone bond, that showed remarkable therapeutic effect against various tumor models and in a human pilot study. Toward clinical development, here we report THP release profile from its HPMA copolymer conjugate, the conjugate stability, protein and cell-binding and solubility of P-THP. Size exclusion chromatography of P-THP (molecular weight 38 kDa) showed similar hydrodynamic volume as bovine serum albumin (BSA) in aqueous solution, with no apparent interactions with BSA, nor aggregation by itself. pH-responsive release of free THP was reconfirmed at pHs 6.5 and lower. The drug release was significantly affected by a type of used buffer. Phosphate buffer seems to facilitate faster hydrazone bond cleavage at pH 7.4 whereas higher stability was achieved in L-arginine solution which yielded only little cleavage and THP release, approx. 15% within 2 weeks at the same pH at 25 °C. Furthermore, ex vivo study using sera of different animal species showed very high stability of P-THP. Incubation with blood showed high stability of P-THP during circulation, without binding to blood cells. These findings revealed that L-arginine solution provides appropriate media for formulation of P-THP infusion solution as tumor-targeted polymeric anticancer drug based on EPR effect.
- MeSH
- arginin chemie MeSH
- doxorubicin analogy a deriváty chemie MeSH
- králíci MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- methakryláty chemie MeSH
- myši MeSH
- nosiče léků chemie MeSH
- pilotní projekty MeSH
- polymery chemie MeSH
- protinádorové látky chemie MeSH
- rozpustnost účinky léků MeSH
- sérový albumin hovězí chemie MeSH
- uvolňování léčiv účinky léků MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH