-
Something wrong with this record ?
HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release
T. Etrych, M. Sírová, L. Starovoytova, B. Ríhová, K. Ulbrich,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
20518512
DOI
10.1021/mp100119f
Knihovny.cz E-resources
- MeSH
- Hydrogen-Ion Concentration MeSH
- Lymphoma, T-Cell drug therapy MeSH
- Methacrylates chemistry MeSH
- Mice, Inbred BALB C MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Paclitaxel chemistry pharmacology MeSH
- Polymers chemical synthesis chemistry pharmacology MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Taxoids chemistry pharmacology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this paper we describe the synthesis, physicochemical characteristics and data on the biological activity of polymer prodrugs based on the anticancer drugs paclitaxel (PTX) and docetaxel (DTX) conjugated with a water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer drug carrier. The drugs were derivatized and then attached to the polymer backbone via a spacer that is stable under physiological conditions (pH 7.4) and hydrolytically degradable in mild acidic environments (e.g., endosomes, pH approximately 5). Polymer-drug conjugates were designed to achieve prolonged blood circulation and release of the active compound in target cells. Six types of conjugates differing in the structure of the keto acid (levulic, 3-(acetyl)acrylic acid) and 4-(2-oxopropyl)benzoic acid-containing spacer or in the amount of drug bound to the HPMA copolymer were synthesized. In all the conjugates, the linkage susceptible to hydrolytic cleavage was formed by the reaction of the carbonyl group of a drug derivative with the hydrazide group-terminated side chains of the polymer. In vitro incubation of the conjugates in buffers resulted in much faster release of drugs or their derivatives from the polymer at pH 5 than at pH 7.4 with the rate depending on the detailed structure of the spacer. Conjugates containing drugs acylated with levulic acid were tested for their anticancer activity in vivo using two murine models. The PTX-containing conjugate showed better antitumor efficacy in the 4T1 model of mammary carcinoma than the parent drug and its derivative. The DTX-containing conjugate demonstrated high activity in treating EL4 T cell lymphoma. The treatment with the polymer conjugates was devoid of side toxicity. In both models, we achieved complete regression of established tumors accompanied by a durable tumor resistance in most of the cured animals.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026368
- 003
- CZ-PrNML
- 005
- 20121210093712.0
- 007
- ta
- 008
- 120817s2010 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1021/mp100119f $2 doi
- 035 __
- $a (PubMed)20518512
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Etrych, Tomás $u Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic. etrych@imc.cas.cz
- 245 10
- $a HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release / $c T. Etrych, M. Sírová, L. Starovoytova, B. Ríhová, K. Ulbrich,
- 520 9_
- $a In this paper we describe the synthesis, physicochemical characteristics and data on the biological activity of polymer prodrugs based on the anticancer drugs paclitaxel (PTX) and docetaxel (DTX) conjugated with a water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer drug carrier. The drugs were derivatized and then attached to the polymer backbone via a spacer that is stable under physiological conditions (pH 7.4) and hydrolytically degradable in mild acidic environments (e.g., endosomes, pH approximately 5). Polymer-drug conjugates were designed to achieve prolonged blood circulation and release of the active compound in target cells. Six types of conjugates differing in the structure of the keto acid (levulic, 3-(acetyl)acrylic acid) and 4-(2-oxopropyl)benzoic acid-containing spacer or in the amount of drug bound to the HPMA copolymer were synthesized. In all the conjugates, the linkage susceptible to hydrolytic cleavage was formed by the reaction of the carbonyl group of a drug derivative with the hydrazide group-terminated side chains of the polymer. In vitro incubation of the conjugates in buffers resulted in much faster release of drugs or their derivatives from the polymer at pH 5 than at pH 7.4 with the rate depending on the detailed structure of the spacer. Conjugates containing drugs acylated with levulic acid were tested for their anticancer activity in vivo using two murine models. The PTX-containing conjugate showed better antitumor efficacy in the 4T1 model of mammary carcinoma than the parent drug and its derivative. The DTX-containing conjugate demonstrated high activity in treating EL4 T cell lymphoma. The treatment with the polymer conjugates was devoid of side toxicity. In both models, we achieved complete regression of established tumors accompanied by a durable tumor resistance in most of the cured animals.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a protinádorové látky $x chemie $x farmakologie $7 D000970
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a proliferace buněk $x účinky léků $7 D049109
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a lymfom T-buněčný $x farmakoterapie $7 D016399
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a methakryláty $x chemie $7 D008689
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední BALB C $7 D008807
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a paclitaxel $x chemie $x farmakologie $7 D017239
- 650 _2
- $a polymery $x chemická syntéza $x chemie $x farmakologie $7 D011108
- 650 _2
- $a taxoidy $x chemie $x farmakologie $7 D043823
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sírová, Milada
- 700 1_
- $a Starovoytova, L
- 700 1_
- $a Ríhová, Blanka
- 700 1_
- $a Ulbrich, Karel
- 773 0_
- $w MED00008279 $t Molecular pharmaceutics $x 1543-8392 $g Roč. 7, č. 4 (2010), s. 1015-26
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20518512 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20121210093749 $b ABA008
- 999 __
- $a ok $b bmc $g 948410 $s 783714
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 7 $c 4 $d 1015-26 $i 1543-8392 $m Molecular pharmaceutics $n Mol Pharm $x MED00008279
- LZP __
- $a Pubmed-20120817/10/04