Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior

. 2023 Nov 13 ; 24 (11) : 4705-4717. [epub] 20230908

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37680126

Galectins, the glycan binding proteins, and their respective carbohydrate ligands represent a unique fundamental regulatory network modulating a plethora of biological processes. The advances in galectin-targeted therapy must be based on a deep understanding of the mechanism of ligand-protein recognition. Carbosilane dendrimers, the well-defined and finely tunable nanoscaffolds with low toxicity, are promising for multivalent carbohydrate ligand presentation to target galectin receptors. The study discloses a synthetic method for two types of lactose-functionalized carbosilane glycodendrimers (Lac-CS-DDMs). Furthermore, we report their outstanding, dendritic effect-driven affinity to tandem-type galectins, especially Gal-9. In the enzyme-linked immunosorbent assay, the affinity of the third-generation multivalent dendritic ligand bearing 32 lactose units to Gal-9 reached nanomolar values (IC50 = 970 nM), being a 1400-fold more effective inhibitor than monovalent lactose for this protein. This demonstrates a game-changing impact of multivalent presentation on the inhibitory effect of a ligand as simple as lactose. Moreover, using DLS hydrodynamic diameter measurements, we correlated the increased affinity of the glycodendrimer ligands to Gal-3 and Gal-8 but especially to Gal-9 with the formation of relatively uniform and stable galectin/Lac-CS-DDM aggregates.

Zobrazit více v PubMed

Johannes L.; Jacob R.; Leffler H. Galectins at a Glance. J. Cell Sci. 2018, 131, jcs208884.10.1242/jcs.208884. PubMed DOI

Liu F.-T.; Patterson R. J.; Wang J. L. Intracellular Functions of Galectins. Biochim. Biophys. Acta, Gen. Subj. 2002, 1572, 263–273. 10.1016/S0304-4165(02)00313-6. PubMed DOI

Rabinovich G. A. Galectins: An Evolutionarily Conserved Family of Animal Lectins with Multifunctional Properties; A Trip from the Gene to Clinical Therapy. Cell Death Differ. 1999, 6, 711–721. 10.1038/sj.cdd.4400535. PubMed DOI

Martin-Saldaña S.; Chevalier M. T.; Pandit A. Therapeutic Potential of Targeting Galectins – A Biomaterials-Focused Perspective. Biomaterials 2022, 286, 121585.10.1016/j.biomaterials.2022.121585. PubMed DOI

Jia W.; Kidoya H.; Yamakawa D.; Naito H.; Takakura N. Galectin-3 Accelerates M2 Macrophage Infiltration and Angiogenesis in Tumors. Am. J. Pathol. 2013, 182, 1821–1831. 10.1016/J.AJPATH.2013.01.017. PubMed DOI

Hisrich B. V.; Young R. B.; Sansone A. M.; Bowens Z.; Green L. J.; Lessey B. A.; Blenda A. V. Role of Human Galectins in Inflammation and Cancers Associated with Endometriosis. Biomolecules 2020, 10, 230.10.3390/biom10020230. PubMed DOI PMC

Cousin J. M.; Cloninger M. J. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int. J. Mol. Sci. 2016, 17, 1566.10.3390/ijms17091566. PubMed DOI PMC

Silva-Filho A. F.; Sena W. L. B.; Lima L. R. A.; Carvalho L. V. N.; Pereira M. C.; Santos L. G. S.; Santos R. V. C.; Tavares L. B.; Pitta M. G. R.; Rêgo M. J. B. M. Glycobiology Modifications in Intratumoral Hypoxia: The Breathless Side of Glycans Interaction. Cell. Physiol. Biochem. 2017, 41, 1801–1829. 10.1159/000471912. PubMed DOI

Vyakarnam A.; Dagher S. F.; Wang J. L.; Patterson R. J. Evidence for a Role for Galectin-1 in Pre-mRNA Splicing. Mol. Cell. Biol. 1997, 17, 4730–4737. 10.1128/mcb.17.8.4730. PubMed DOI PMC

Gabius H.-J.; Wu A. M.. Galectins as Regulators of Tumor Growth and Invasion by Targeting Distinct Cell Surface Glycans and Implications for Drug Design. In Galectins; John Wiley & Sons, USA: 2008; 71–85, 10.1002/9780470378076.ch4. DOI

Klyosov A. A.; Traber P. G.. Galectins in Disease and Potential Therapeutic Approaches. InACS Symposium Series; 2012; 1115, 3–43, 10.1021/bk-2012-1115.ch001. DOI

Yan H.; Kamiya T.; Suabjakyong P.; Tsuji N. M. Targeting C-Type Lectin Receptors for Cancer Immunity. Front. Immunol. 2015, 6, 408.10.3389/fimmu.2015.00408. PubMed DOI PMC

Kamili N. A.; Arthur C. M.; Gerner-Smidt C.; Tafesse E.; Blenda A.; Dias-Baruffi M.; Stowell S. R. Key Regulators of Galectin-Glycan Interactions. Proteomics 2016, 16, 3111–3125. 10.1002/pmic.201600116. PubMed DOI PMC

Tan P.; Chen X.; Zhang H.; Wei Q.; Luo K. Artificial Intelligence Aids in Development of Nanomedicines for Cancer Management. Semin. Cancer Biol. 2023, 89, 61–75. 10.1016/j.semcancer.2023.01.005. PubMed DOI

Kaminker J. D.; Timoshenko A. V. Expression, Regulation, and Functions of the Galectin-16 Gene in Human Cells and Tissues. Biomolecules 2021, 11, 1909.10.3390/biom11121909. PubMed DOI PMC

Laaf D.; Bojarová P.; Elling L.; Křen V. Galectin–Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol. 2019, 37, 402–415. 10.1016/j.tibtech.2018.10.001. PubMed DOI

Hirabayashi J.; Kasai K. I. The Family of Metazoan Metal-Independent β-Galactoside-Binding Lectins: Structure, Function and Molecular Evolution. Glycobiology 1993, 3, 297–304. 10.1093/glycob/3.4.297. PubMed DOI

Troncoso M. F.; Elola M. T.; Croci D. O.; Rabinovich G. A. Integrating Structure and Function of “Tandem-Repeat” Galectins. Front. Biosci. 2012, 4, 864–887. 10.2741/s305. PubMed DOI

Nagae M.; Yamaguchi Y. Three-Dimensional Structural Aspects of Protein-Polysaccharide Interactions. Int. J. Mol. Sci. 2014, 15, 3768–3783. 10.3390/ijms15033768. PubMed DOI PMC

Ideo H.; Matsuzaka T.; Nonaka T.; Seko A.; Yamashita K. Galectin-8-N-domain Recognition Mechanism for Sialylated and Sulfated Glycans. J. Biol. Chem. 2011, 286, 11346–11355. 10.1074/jbc.M110.195925. PubMed DOI PMC

Stowell S. R.; Dias-Baruffi M.; Penttilä L.; Renkonen O.; Nyame A. K.; Cummings R. D. Human Galectin-1 Recognition of Poly-N-acetyllactosamine and Chimeric Polysaccharides. Glycobiology 2004, 14, 157–167. 10.1093/glycob/cwh018. PubMed DOI

Vašíček T.; Spiwok V.; Červený J.; Petrásková L.; Bumba L.; Vrbata D.; Pelantová H.; Křen V.; Bojarová P. Regioselective 3-O-Substitution of Unprotected Thiodigalactosides: Direct Route to Galectin Inhibitors. Chem. - Eur. J. 2020, 26, 9620–9631. 10.1002/chem.202002084. PubMed DOI

Heine V.; Hovorková M.; Vlachová M.; Filipová M.; Bumba L.; Janoušková O.; Hubálek M.; Cvačka J.; Petrásková L.; Pelantová H.; Křen V.; Elling L.; Bojarová P. Immunoprotective Neo-Glycoproteins: Chemoenzymatic Synthesis of Multivalent Glycomimetics for Inhibition of Cancer-Related Galectin-3. Eur. J. Med. Chem. 2021, 220, 113500.10.1016/j.ejmech.2021.113500. PubMed DOI

Peterson K.; Kumar R.; Stenström O.; Verma P.; Verma P. R.; Håkansson M.; Kahl-Knutsson B.; Zetterberg F.; Leffler H.; Akke M.; Logan D. T.; Nilsson U. J. Systematic Tuning of Fluoro-galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit nM Affinity and High Selectivity. J. Med. Chem. 2018, 61, 1164–1175. 10.1021/acs.jmedchem.7b01626. PubMed DOI

van Klaveren S.; Dernovšek J.; Jakopin Ž.; Anderluh M.; Leffler H.; Nilsson U. J.; Tomašič T. Design and Synthesis of Novel 3-Triazolyl-1-thiogalactosides as Galectin-1, −3 and −8 Inhibitors. RSC Adv. 2022, 12, 18973–18984. 10.1039/d2ra03163a. PubMed DOI PMC

Chan Y.-C.; Lin H.-Y.; Tu Z.; Kuo Y.-H.; Hsu S.-T. D.; Lin C.-H. Dissecting the Structure–Activity Relationship of Galectin–Ligand Interactions. Int. J. Mol. Sci. 2018, 19, 392.10.3390/ijms19020392. PubMed DOI PMC

Müller C.; Despras G.; Lindhorst T. K. Organizing Multivalency in Carbohydrate Recognition. Chem. Soc. Rev. 2016, 45, 3275–3302. 10.1039/c6cs00165c. PubMed DOI

González-Cuesta M.; Ortiz Mellet C.; García Fernández J. M. Carbohydrate Supramolecular Chemistry: Beyond the Multivalent Effect. Chem. Commun. 2020, 56, 5207–5222. 10.1039/d0cc01135e. PubMed DOI

Hovorková M.; Červený J.; Bumba L.; Pelantová H.; Cvačka J.; Křen V.; Renaudet O.; Goyard D.; Bojarová P. Advanced High-Affinity Glycoconjugate Ligands of Galectins. Bioorg. Chem. 2023, 131, 106279.10.1016/j.bioorg.2022.106279. PubMed DOI

Tavares M. R.; Bláhová M.; Sedláková L.; Elling L.; Pelantová H.; Konefał R.; Etrych T.; Křen V.; Bojarová P.; Chytil P. High-Affinity N-(2-Hydroxypropyl)methacrylamide Copolymers with Tailored N-Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules 2020, 21, 641–652. 10.1021/acs.biomac.9b01370. PubMed DOI

Konvalinková D.; Dolníček F.; Hovorková M.; Červený J.; Kundrát O.; Pelantová H.; Petrásková L.; Cvačka J.; Faizulina M.; Varghese B.; Kovaříček P.; Křen V.; Lhoták P.; Bojarová P. Glycocalix[4]arenes and Their Affinity to a Library of Galectins: The Linker Matters. Org. Biomol. Chem. 2023, 21, 1294–1302. 10.1039/D2OB02235D. PubMed DOI

Garner O. B.; Baum L. G. Galectin-Glycan Lattices Regulate Cell-Surface Glycoprotein Organization and Signalling. Biochem. Soc. Trans. 2008, 36, 1472–1477. 10.1042/BST0361472. PubMed DOI PMC

Perillo N. L.; Pace K. E.; Seilhamer J. J.; Baum L. G. Apoptosis of T Cells Mediated by Galectin–1. Nature 1995, 378, 736–739. 10.1038/378736a0. PubMed DOI

Pace K. E.; Lee C.; Stewart P. L.; Baum L. G. Restricted Receptor Segregation into Membrane Microdomains Occurs on Human T Cells during Apoptosis Induced by Galectin-1. J. Immunol. 1999, 163, 3801–3811. 10.4049/jimmunol.163.7.3801. PubMed DOI

Kopitz J.; von Reitzenstein C.; André S.; Kaltner H.; Uhl J.; Ehemann V.; Cantz M.; Gabius H. J. Negative Regulation of Neuroblastoma Cell Growth by Carbohydrate-Dependent Surface Binding of Galectin-1 and Functional Divergence from Galectin-3. J. Biol. Chem. 2001, 276, 35917–35923. 10.1074/jbc.M105135200. PubMed DOI

Belardi B.; O’Donoghue G. P.; Smith A. W.; Groves J. T.; Bertozzi C. R. Investigating Cell Surface Galectin-Mediated Cross-Linking on Glycoengineered Cells. J. Am. Chem. Soc. 2012, 134, 9549–9552. 10.1021/ja301694s. PubMed DOI PMC

Kang B.; Opatz T.; Landfester K.; Wurm F. R. Carbohydrate Nanocarriers in Biomedical Applications: Functionalization and Construction. Chem. Soc. Rev. 2015, 44, 8301–8325. 10.1039/c5cs00092k. PubMed DOI

Bojarová P.; Rosencrantz R. R.; Elling L.; Křen V. Enzymatic Glycosylation of Multivalent Scaffolds. Chem. Soc. Rev. 2013, 42, 4774–4797. 10.1039/c2cs35395d. PubMed DOI

Bojarová P.; Tavares M. R.; Laaf D.; Bumba L.; Petrásková L.; Konefał R.; Bláhová M.; Pelantová H.; Elling L.; Etrych T.; Chytil P.; Křen V. Biocompatible Glyconanomaterials Based on HPMA-Copolymer for Specific Targeting of Galectin-3. J. Nanobiotechnol. 2018, 16, 73.10.1186/s12951-018-0399-1. PubMed DOI PMC

André S.; Grandjean C.; Gautier F. M.; Bernardi S.; Sansone F.; Gabius H. J.; Ungaro R. Combining Carbohydrate Substitutions at Bioinspired Positions with Multivalent Presentation towards Optimising Lectin Inhibitors: Case Study with Calixarenes. Chem. Commun. 2011, 47, 6126–6128. 10.1039/c1cc11163a. PubMed DOI

Laaf D.; Bojarová P.; Mikulová B.; Pelantová H.; Křen V.; Elling L. Two-Step Enzymatic Synthesis of β-d-N-Acetylgalactosamine-(1→4)-d-N-acetylglucosamine (LacdiNAc) Chitooligomers for Deciphering Galectin Binding Behavior. Adv. Synth. Catal. 2017, 359, 2101–2108. 10.1002/adsc.201700331. DOI

Hoffmann M.; Hayes M. R.; Pietruszka J.; Elling L. Synthesis of the Thomsen-Friedenreich-Antigen (TF-Antigen) and Binding of Galectin-3 to TF-Antigen Presenting Neo-Glycoproteins. Glycoconjugate J. 2020, 37, 457–470. 10.1007/s10719-020-09926-y. PubMed DOI PMC

Restuccia A.; Tian Y. F.; Collier J. H.; Hudalla G. A. Self-Assembled Glycopeptide Nanofibers as Modulators of Galectin-1 Bioactivity. Cell. Mol. Bioeng. 2015, 8, 471–487. 10.1007/s12195-015-0399-2. PubMed DOI PMC

Restuccia A.; Fettis M. M.; Farhadi S. A.; Molinaro M. D.; Kane B.; Hudalla G. A. Evaluation of Self-Assembled Glycopeptide Nanofibers Modified with N,N′-Diacetyllactosamine for Selective Galectin-3 Recognition and Inhibition. ACS Biomater. Sci. Eng. 2018, 4, 3451–3459. 10.1021/acsbiomaterials.8b00611. DOI

Drozdová A.; Bojarová P.; Křenek K.; Weignerová L.; Henßen B.; Elling L.; Christensen H.; Jensen H. H.; Pelantová H.; Kuzma M.; Bezouška K.; Krupová M.; Adámek D.; Slámová K.; Křen V. Enzymatic Synthesis of Dimeric Glycomimetic Ligands of NK Cell Activation Receptors. Carbohydr. Res. 2011, 346, 1599–1609. 10.1016/j.carres.2011.04.043. PubMed DOI

Ennist J. H.; Termuehlen H. R.; Bernhard S. P.; Fricke M. S.; Cloninger M. J. Chemoenzymatic Synthesis of Galectin Binding Glycopolymers. Bioconjugate Chem. 2018, 29, 4030–4039. 10.1021/acs.bioconjchem.8b00599. PubMed DOI PMC

Wrobel D.; Müllerová M.; Strašák T.; Růžička K.; Fulem M.; Kubíková R.; Bryszewska M.; Klajnert-Maculewicz B.; Malý J. Glucose-Modified Carbosilane Dendrimers: Interaction with Model Membranes and Human Serum Albumin. Int. J. Pharm. 2020, 579, 119138.10.1016/j.ijpharm.2020.119138. PubMed DOI

Tomalia D. A.Dendrimers and Other Dendritic Polymers; Fréchet J. M. J., Tomalia D. A., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2001; Vol. 1, 10.1002/0470845821. DOI

Astruc D.; Boisselier E.; Ornelas C. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chem. Rev. 2010, 110, 1857–1959. 10.1021/cr900327d. PubMed DOI

Li H.; Sun J.; Zhu H.; Wu H.; Zhang H.; Gu Z.; Luo K. Recent Advances in Development of Dendritic Polymer-Based Nanomedicines for Cancer Diagnosis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e167010.1002/wnan.1670. PubMed DOI

André S.; Cejas Ortega P. J.; Perez M. A.; Roy R.; Gabius H.-J. Lactose-Containing Starburst Dendrimers: Influence of Dendrimer Generation and Binding-Site Orientation of Receptors (Plant/Animal Lectins and Immunoglobulins) on Binding Properties. Glycobiology 1999, 9, 1253–1261. 10.1093/glycob/9.11.1253. PubMed DOI

Cousin J. M.; Cloninger M. J. Glycodendrimers: Tools to Explore Multivalent Galectin-1 Interactions. Beilstein J. Org. Chem. 2015, 11, 739–747. 10.3762/bjoc.11.84. PubMed DOI PMC

Zhang S.; Moussodia R. O.; Murzeau C.; Sun H. J.; Klein M. L.; Vértesy S.; André S.; Roy R.; Gabius H. J.; Percec V. Dissecting Molecular Aspects of Cell Interactions Using Glycodendrimersomes with Programmable Glycan Presentation and Engineered Human Lectins. Angew. Chem., Int. Ed. 2015, 54, 4036–4040. 10.1002/anie.201410882. PubMed DOI

Zhang S.; Xiao Q.; Sherman S. E.; Muncan A.; Ramos Vicente A. D. M.; Wang Z.; Hammer D. A.; Williams D.; Chen Y.; Pochan D. J.; Vértesy S.; André S.; Klein M. L.; Gabius H. J.; Percec V. Glycodendrimersomes from Sequence-Defined Janus Glycodendrimers Reveal High Activity and Sensor Capacity for the Agglutination by Natural Variants of Human Lectins. J. Am. Chem. Soc. 2015, 137, 13334–13344. 10.1021/jacs.5b08844. PubMed DOI

Zhang S.; Moussodia R. O.; Sun H. J.; Leowanawat P.; Muncan A.; Nusbaum C. D.; Chelling K. M.; Heiney P. A.; Klein M. L.; André S.; Roy R.; Gabius H. J.; Percec V. Mimicking Biological Membranes with Programmable Glycan Ligands Self-Assembled from Amphiphilic Janus Glycodendrimers. Angew. Chem., Int. Ed. 2014, 53, 10899–10903. 10.1002/anie.201403186. PubMed DOI

Caminade A. M.; Fruchon S.; Turrin C. O.; Poupot M.; Ouali A.; Maraval A.; Garzoni M.; Maly M.; Furer V.; Kovalenko V.; Majoral J. P.; Pavan G. M.; Poupot R. The Key Role of the Scaffold on the Efficiency of Dendrimer Nanodrugs. Nat. Commun. 2015, 6, 7722.10.1038/ncomms8722. PubMed DOI PMC

Müllerová M.; Maciel D.; Nunes N.; Wrobel D.; Stofik M.; Červenková Štastná L.; Krupková A.; Cuřínová P.; Nováková K.; Božík M.; Malý M.; Malý J.; Rodrigues J.; Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer-Doxorubicin Complexes. Biomacromolecules 2022, 23, 276–290. 10.1021/acs.biomac.1c01264. PubMed DOI

Kováč P.Carbohydrate Chemistry: Proven Synthetic Methods: Volume 1; CRC Press, 2016; Vol. 1, 10.1201/b11261. DOI

Marchetti P.; Jimenez Solomon M. F.; Szekely G.; Livingston A. G. Molecular Separation with Organic Solvent Nanofiltration: A Critical Review. Chem. Rev. 2014, 114, 10735–10806. 10.1021/cr500006j. PubMed DOI

Krupková A.; Müllerová M.; Petrickovic R.; Strašák T. On the Edge between Organic Solvent Nanofiltration and Ultrafiltration: Characterization of Regenerated Cellulose Membrane with Aspect on Dendrimer Purification and Recycling. Sep. Purif. Technol. 2023, 310, 123141.10.1016/j.seppur.2023.123141. DOI

Hirabayashi J.; Kasai K.-I. Effect of Amino Acid Substitution by Site-Directed Mutagenesis on the Carbohydrate Recognition and Stability of Human 14-kDa β-Galactoside-Binding Lectin. J. Biol. Chem. 1991, 266, 23648–23653. 10.1016/s0021-9258(18)54333-7. PubMed DOI

Witten K. G.; Rech C.; Eckert T.; Charrak S.; Richtering W.; Elling L.; Simon U. Glyco-DNA-Gold Nanoparticles: Lectin-Mediated Assembly and Dual-Stimuli Response. Small 2011, 7, 1954–1960. 10.1002/smll.201100492. PubMed DOI

Itoh A.; Fukata Y.; Miyanaka H.; Nonaka Y.; Ogawa T.; Nakamura T.; Nishi N. Optimization of the Inter-Domain Structure of Galectin-9 for Recombinant Production. Glycobiology 2013, 23, 920–925. 10.1093/glycob/cwt023. PubMed DOI

Bumba L.; Laaf D.; Spiwok V.; Elling L.; Křen V.; Bojarová P. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int. J. Mol. Sci. 2018, 19, 372.10.3390/ijms19020372. PubMed DOI PMC

Bradford M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. 10.1016/0003-2697(76)90527-3. PubMed DOI

Rostovtsev V. V.; Green L. G.; Fokin V. V.; Sharpless K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI

Liang L.; Astruc D. The Copper(I)-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) “Click” Reaction and Its Applications. An Overview. Coord. Chem. Rev. 2011, 255, 2933–2945. 10.1016/j.ccr.2011.06.028. DOI

Joosten J. A. F.; Tholen N. T. H.; Ait El Maate F.; Brouwer A. J.; Wilma Van Esse G.; Rijkers D. T. S.; Liskamp R. M. J.; Pieters R. J. High-Yielding Microwave-Assisted Synthesis of Triazole-Linked Glycodendrimers by Copper-Catalyzed [3+2] Cycloaddition. Eur. J. Org. Chem. 2005, 2005, 3182–3185. 10.1002/ejoc.200500216. DOI

Lee C. Y.; Held R.; Sharma A.; Baral R.; Nanah C.; Dumas D.; Jenkins S.; Upadhaya S.; Du W. Copper-Granule-Catalyzed Microwave-Assisted Click Synthesis of Polyphenol Dendrimers. J. Org. Chem. 2013, 78, 11221–11228. 10.1021/jo401603d. PubMed DOI PMC

Meier L.; Monteiro G. C.; Baldissera R. A. M.; Sá M. M. Simple Method for Fast Deprotection of Nucleosides by Triethylamine-Catalyzed Methanolysis of Acetates in Aqueous Medium. J. Braz. Chem. Soc. 2010, 21, 859–866. 10.1590/S0103-50532010000500013. DOI

Bhattacharjee S. DLS and Zeta Potential - What They Are and What They Are Not?. J. Controlled Release 2016, 235, 337–351. 10.1016/j.jconrel.2016.06.017. PubMed DOI

Nobbmann U.; Morfesis A. Light Scattering and Nanoparticles. Mater. Today 2009, 12, 52–54. 10.1016/S1369-7021(09)70164-6. DOI

Tomaszewska E.; Soliwoda K.; Kadziola K.; Tkacz-Szczesna B.; Celichowski G.; Cichomski M.; Szmaja W.; Grobelny J. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013, 2013, 313081.10.1155/2013/313081. DOI

Camby I.; Le Mercier M.; Lefranc F.; Kiss R. Galectin-1: A Small Protein with Major Functions. Glycobiology 2006, 16, 137R–157R. 10.1093/glycob/cwl025. PubMed DOI

Lepur A.; Salomonsson E.; Nilsson U. J.; Leffler H. Ligand Induced Galectin-3 Protein Self-Association. J. Biol. Chem. 2012, 287, 21751–21756. 10.1074/jbc.C112.358002. PubMed DOI PMC

Miyanishi N.; Nishi N.; Abe H.; Kashio Y.; Shinonaga R.; Nakakita S. I.; Sumiyoshi W.; Yamauchi A.; Nakamura T.; Hirashima M.; Hirabayashi J. Carbohydrate-Recognition Domains of Galectin-9 Are Involved in Intermolecular Interaction with Galectin-9 Itself and Other Members of the Galectin Family. Glycobiology 2007, 17, 423–432. 10.1093/glycob/cwm001. PubMed DOI

Scott S. A.; Scott K.; Blanchard H. Crystallization and Preliminary Crystallographic Analysis of Recombinant Human Galectin-1. Acta Cryst. F 2007, 63, 967–971. 10.1107/S1744309107050142. PubMed DOI PMC

Halimi H.; Rigato A.; Byrne D.; Ferracci G.; Sebban-Kreuzer C.; ElAntak L.; Guerlesquin F. Glycan Dependence of Galectin-3 Self-Association Properties. PLoS One 2014, 9, e11183610.1371/journal.pone.0111836. PubMed DOI PMC

Birdsall B.; Feeney J.; Burdett I. D. J.; Bawumia S.; Barboni E. A. M.; Hughes R. C. NMR Solution Studies of Hamster Galectin-3 and Electron Microscopic Visualization of Surface-Adsorbed Complexes: Evidence for Interactions between the N- and C-Terminal Domains. Biochemistry 2001, 40, 4859–4866. 10.1021/bi002907f. PubMed DOI

Salomonsson E.; Larumbe A.; Tejler J.; Tullberg E.; Rydberg H.; Sundin A.; Khabut A.; Frejd T.; Lobsanov Y. D.; Rini J. M.; Nilsson U. J.; Leffler H. Monovalent Interactions of Galectin-1. Biochemistry 2010, 49, 9518–9532. 10.1021/bi1009584. PubMed DOI

Bernhard S. P.; Fricke M. S.; Haag R.; Cloninger M. J. Protein Aggregation Nucleated by Functionalized Dendritic Polyglycerols. Polym. Chem. 2020, 11, 3849–3862. 10.1039/d0py00667j. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace