Comparative Study of Functionalized Carbosilane Dendrimers for siRNA Delivery: Synthesis, Cytotoxicity, and Biophysical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39829590
PubMed Central
PMC11740622
DOI
10.1021/acsomega.4c08314
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types. The study evaluates the dendrimer's in vitro cytotoxicity, biophysical properties, and complexation capabilities in comparison with widely used PAMAM dendrimers. CS-glyco and PAMAMs were significantly less toxic to MCF-7 and THP-1 cell lines than were CS-N and CS-P, despite having the same peripheral charge density. Notably, CS-glyco maintained biocompatibility comparable to analogous neutral CS glycodendrimers, underscoring the exceptional capability of sugar coating to reduce toxicity. Dendriplexes formed from these nanocarriers protected siRNA from RNase degradation and facilitated its release in the presence of heparin, highlighting its potential in gene delivery applications. The study provides a background for future in-depth investigations into the introduced dendritic nanocarriers, which show significant potential for advancing drug delivery.
Zobrazit více v PubMed
Bulaklak K.; Gersbach C. A. The once and future gene therapy. Nat. Commun. 2020, 11 (1), 5820.10.1038/s41467-020-19505-2. PubMed DOI PMC
Hu B.; Zhong L.; Weng Y.; Peng L.; Huang Y.; Zhao Y.; Liang X.-J. Therapeutic siRNA: state of the art. Signal Transduction Targeted Ther. 2020, 5 (1), 101.10.1038/s41392-020-0207-x. PubMed DOI PMC
Sung Y. K.; Kim S. W. Recent advances in the development of gene delivery systems. Biomater. Res. 2019, 23 (1), 8.10.1186/s40824-019-0156-z. PubMed DOI PMC
Nikitenko N. A.; Prassolov V. S. Non-Viral Delivery and Therapeutic Application of Small Interfering RNAs. Acta Naturae 2013, 5 (3), 35–53. 10.32607/20758251-2013-5-3-35-53. PubMed DOI PMC
Ramamoorth M.; Narvekar A. Non viral vectors in gene therapy- an overview. J. Clin. Diagn. Res. 2015, 9 (1), GE01.10.7860/JCDR/2015/10443.5394. PubMed DOI PMC
Chis A. A.; Dobrea C.; Morgovan C.; Arseniu A. M.; Rus L. L.; Butuca A.; Juncan A. M.; Totan M.; Vonica-Tincu A. L.; Cormos G.; Muntean A. C.; Muresan M. L.; Gligor F. G.; Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules (Basel, Switzerland) 2020, 25 (17), 3982.10.3390/molecules25173982. PubMed DOI PMC
Li X.; Naeem A.; Xiao S.; Hu L.; Zhang J.; Zheng Q. Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022, 14 (6), 1292.10.3390/pharmaceutics14061292. PubMed DOI PMC
Jain K.; Kesharwani P.; Gupta U.; Jain N. K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm. 2010, 394 (1), 122–142. 10.1016/j.ijpharm.2010.04.027. PubMed DOI
Maiti P. K.; Bagchi B. Structure and Dynamics of DNA–Dendrimer Complexation: Role of Counterions, Water, and Base Pair Sequence. Nano Lett. 2006, 6 (11), 2478–2485. 10.1021/nl061609m. PubMed DOI
Wang J.; Li B.; Qiu L.; Qiao X.; Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J. Biol. Eng. 2022, 16 (1), 18.10.1186/s13036-022-00298-5. PubMed DOI PMC
Dufès C.; Uchegbu I. F.; Schätzlein A. G. Dendrimers in gene delivery. Advanced drug delivery reviews 2005, 57 (15), 2177–2202. 10.1016/j.addr.2005.09.017. PubMed DOI
Abedi-Gaballu F.; Dehghan G.; Ghaffari M.; Yekta R.; Abbaspour-Ravasjani S.; Baradaran B.; Dolatabadi J. E. N.; Hamblin M. R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today 2018, 12, 177–190. 10.1016/j.apmt.2018.05.002. PubMed DOI PMC
Araújo R. V.; Santos S. D. S.; Igne Ferreira E.; Giarolla J. New Advances in General Biomedical Applications of PAMAM Dendrimers. Molecules 2018, 23 (11), 2849.10.3390/molecules23112849. PubMed DOI PMC
Choi Y. J.; Kang S. J.; Kim Y. J.; Lim Y.-b.; Chung H. W. Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug and Chemical Toxicology 2010, 33 (4), 357–366. 10.3109/01480540903493507. PubMed DOI
Surekha B.; Kommana N. S.; Dubey S. K.; Kumar A. V. P.; Shukla R.; Kesharwani P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf., B 2021, 204, 11183710.1016/j.colsurfb.2021.111837. PubMed DOI
Madaan K.; Kumar S.; Poonia N.; Lather V.; Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. BioAllied Sci. 2014, 6 (3), 139.10.4103/0975-7406.130965. PubMed DOI PMC
Jiménez J. L.; Gómez R.; Briz V.; Madrid R.; Bryszewsk M.; de la Mata F. J.; Muñoz-Fernández M. Á. Carbosilane dendrimers as carriers of siRNA. Journal of Drug Delivery Science and Technology 2012, 22 (1), 75–82. 10.1016/S1773-2247(12)50007-9. DOI
Arnáiz E.; Doucede L. I.; García-Gallego S.; Urbiola K.; Gómez R.; Tros de Ilarduya C.; de la Mata F. J. Synthesis of Cationic Carbosilane Dendrimers via Click Chemistry and Their Use as Effective Carriers for DNA Transfection into Cancerous Cells. Mol. Pharmaceutics 2012, 9 (3), 433–447. 10.1021/mp200542j. PubMed DOI
Strašák T.; Malý J.; Wróbel D.; Malý M.; Herma R.; Čermák J.; Müllerová M.; Št’astná L. Č.; Cuřínová P. Phosphonium carbosilane dendrimers for biomedical applications - synthesis, characterization and cytotoxicity evaluation. RSC Adv. 2017, 7 (30), 18724–18744. 10.1039/C7RA01845B. DOI
Herma R.; Wrobel D.; Liegertová M.; Müllerová M.; Strašák T.; Maly M.; Semerádtová A.; Štofik M.; Appelhans D.; Maly J. Carbosilane dendrimers with phosphonium terminal groups are low toxic non-viral transfection vectors for siRNA cell delivery. Int. J. Pharm. 2019, 562, 51.10.1016/j.ijpharm.2019.03.018. PubMed DOI
Krasheninina O. A.; Apartsin E. K.; Fuentes E.; Szulc A.; Ionov M.; Venyaminova A. G.; Shcharbin D.; de la Mata F. J.; Bryszewska M.; Gómez R. Complexes of Pro-Apoptotic siRNAs and Carbosilane Dendrimers: Formation and Effect on Cancer Cells. Pharmaceutics 2019, 11, 25.10.3390/pharmaceutics11010025. PubMed DOI PMC
Zawadzki S.; Martín-Serrano Á.; Okła E.; Kędzierska M.; Garcia-Gallego S.; López P. O.; de la Mata F. J.; Michlewska S.; Makowski T.; Ionov M.; Pędziwiatr-Werbicka E.; Bryszewska M.; Miłowska K. Synthesis and biophysical evaluation of carbosilane dendrimers as therapeutic siRNA carriers. Sci. Rep. 2024, 14, 1615.10.1038/s41598-024-51238-w. PubMed DOI PMC
Yang J.; Zhang Q.; Chang H.; Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem. Rev. 2015, 115 (11), 5274–5300. 10.1021/cr500542t. PubMed DOI
Kim K. S.; Lei Y.; Stolz D. B.; Liu D. Bifunctional compounds for targeted hepatic gene delivery. Gene Ther. 2007, 14 (8), 704–708. 10.1038/sj.gt.3302917. PubMed DOI
Han S.; Ganbold T.; Bao Q.; Yoshida T.; Baigude H. Sugar Functionalized Synergistic Dendrimers for Biocompatible Delivery of Nucleic Acid Therapeutics. Polymers 2018, 10 (9), 1034.10.3390/polym10091034. PubMed DOI PMC
Ionov M.; Lazniewska J.; Dzmitruk V.; Halets I.; Loznikova S.; Novopashina D.; Apartsin E.; Krasheninina O.; Venyaminova A.; Milowska K.; Nowacka O.; Gomez-Ramirez R.; de la Mata F. J.; Majoral J.-P.; Shcharbin D.; Bryszewska M. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. Int. J. Pharm. 2015, 485 (1), 261–269. 10.1016/j.ijpharm.2015.03.024. PubMed DOI
van der Made A. W.; van Leeuwen P. W. N. M.; de Wilde J. C.; Brandes R. A. C. Dendrimeric silanes. Adv. Mater. 1993, 5 (6), 466–468. 10.1002/adma.19930050613. DOI
Müllerová M.; Maciel D.; Nunes N.; Wrobel D.; Stofik M.; Červenková Št’astná L.; Krupková A.; Cuřínová P.; Nováková K.; Božík M.; Malý M.; Malý J.; Rodrigues J.; Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer–Doxorubicin Complexes. Biomacromolecules 2021, 23, 276.10.1021/acs.biomac.1c01264. PubMed DOI
Müllerová M.; Hovorková M.; Závodná T.; Červenková Št’astná L.; Krupková A.; Hamala V.; Nováková K.; Topinka J.; Bojarová P.; Strašák T. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules 2023, 24 (11), 4705–4717. 10.1021/acs.biomac.3c00426. PubMed DOI PMC
Pędziwiatr-Werbicka E.; Gorzkiewicz M.; Michlewska S.; Ionov M.; Shcharbin D.; Klajnert-Maculewicz B.; Peña-González C. E.; Sánchez-Nieves J.; Gómez R.; de la Mata F. J.; Bryszewska M. Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. J. Mol. Liq. 2021, 324, 11472610.1016/j.molliq.2020.114726. DOI
Joosten J. A. F.; Tholen N. T. H.; Ait El Maate F.; Brouwer A. J.; van Esse G. W.; Rijkers D. T. S.; Liskamp R. M. J.; Pieters R. J. High-Yielding Microwave-Assisted Synthesis of Triazole-Linked Glycodendrimers by Copper-Catalyzed [3 + 2] Cycloaddition. Eur. J. Org. Chem. 2005, 2005 (15), 3182–3185. 10.1002/ejoc.200500216. DOI
Rijkers D. T. S.; van Esse G. W.; Merkx R.; Brouwer A. J.; Jacobs H. J. F.; Pieters R. J.; Liskamp R. M. J. Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry. Chem. Commun. 2005, 36, 4581–4583. 10.1039/b507975f. PubMed DOI
Lee C. Y.; Held R.; Sharma A.; Baral R.; Nanah C.; Dumas D.; Jenkins S.; Upadhaya S.; Du W. Copper-Granule-Catalyzed Microwave-Assisted Click Synthesis of Polyphenol Dendrimers. Journal of Organic Chemistry 2013, 78 (22), 11221–11228. 10.1021/jo401603d. PubMed DOI PMC
Hoyos P.; Perona A.; Juanes O.; Rumbero Á.; Hernáiz M. J. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chem. - Eur. J. 2021, 27 (28), 7593–7624. 10.1002/chem.202005065. PubMed DOI
Mousavifar L.; Roy R. Design, Synthetic Strategies, and Therapeutic Applications of Heterofunctional Glycodendrimers. Molecules 2021, 26 (9), 2428.10.3390/molecules26092428. PubMed DOI PMC
Szulc A.; Pulaski L.; Appelhans D.; Voit B.; Klajnert-Maculewicz B. Sugar-modified poly(propylene imine) dendrimers as drug delivery agents for cytarabine to overcome drug resistance. Int. J. Pharm. 2016, 513 (1), 572–583. 10.1016/j.ijpharm.2016.09.063. PubMed DOI
Abbassi L.; Chabre Y. M.; Kottari N.; Arnold A. A.; André S.; Josserand J.; Gabius H.-J.; Roy R. Multifaceted glycodendrimers with programmable bioactivity through convergent, divergent, and accelerated approaches using polyfunctional cyclotriphosphazenes. Polym. Chem. 2015, 6 (44), 7666–7683. 10.1039/C5PY01283J. DOI
Shchelik I. S.; Magasumova A. I.; Sebyakin Y. L. Glycodendrimers and Their Derivatives as Potential Therapeutic Agents. Macroheterocycles 2015, 8 (2), 199–217. 10.6060/mhc141140s. DOI
Janaszewska A.; Mączyńska K.; Matuszko G.; Appelhans D.; Voit B.; Klajnert B.; Bryszewska M. Cytotoxicity of PAMAM, PPI and maltose modified PPI dendrimers in Chinese hamster ovary (CHO) and human ovarian carcinoma (SKOV3) cells. New J. Chem. 2012, 36 (2), 428–437. 10.1039/C1NJ20489K. DOI
Wrobel D.; Janaszewska A.; Appelhans D.; Voit B.; Bryszewska M.; Maly J. Interactions of dendritic glycopolymer with erythrocytes, red blood cell ghosts and membrane enzymes. Int. J. Pharm. 2015, 496 (2), 475–488. 10.1016/j.ijpharm.2015.10.046. PubMed DOI
Liegertová M.; Wrobel D.; Herma R.; Müllerová M.; Št’astná L. Č.; Cuřínová P.; Strašák T.; Malý M.; Čermák J.; Smejkal J.; Štofik M.; Maly J. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology 2018, 12, 797–818. 10.1080/17435390.2018.1475582. PubMed DOI
Chanput W.; Mes J. J.; Wichers H. J. THP-1 cell line: An in vitro cell model for immune modulation approach. International Immunopharmacology 2014, 23 (1), 37–45. 10.1016/j.intimp.2014.08.002. PubMed DOI
Wang X.; Teng Z.; Wang H.; Wang C.; Liu Y.; Tang Y.; Wu J.; Sun J.; Wang H.; Wang J.; Lu G. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system. Int. J. Clin. Exp. Pathol. 2014, 7 (4), 1337–1347. PubMed PMC
Shao N.; Su Y.; Hu J.; Zhang J.; Zhang H.; Cheng Y. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity. Int. J. Nanomed. 2011, 6, 3361–3372. 10.2147/IJN.S27028. PubMed DOI PMC
Zhang J.; Li M.; Wang M.; Xu H.; Wang Z.; Li Y.; Ding B.; Gao J. Effects of the surface charge of polyamidoamine dendrimers on cellular exocytosis and the exocytosis mechanism in multidrug-resistant breast cancer cells. J. Nanobiotechnol. 2021, 19 (1), 135.10.1186/s12951-021-00881-w. PubMed DOI PMC
Shcharbin D.; Pedziwiatr E.; Bryszewska M. How to study dendriplexes I: Characterization. J. Controlled Release 2009, 135 (3), 186–197. 10.1016/j.jconrel.2009.01.015. PubMed DOI
Wrobel D.; Kubikova R.; Mullerova M.; Strasak T.; Ruzicka K.; Fulem M.; Maly J. Phosphonium carbosilane dendrimers - interaction with a simple biological membrane model. Phys. Chem. Chem. Phys. 2018, 20 (21), 14753–14764. 10.1039/C7CP07237F. PubMed DOI
Czarnomysy R.; Bielawska A.; Bielawski K. Effect of 2nd and 3rd generation PAMAM dendrimers on proliferation, differentiation, and pro-inflammatory cytokines in human keratinocytes and fibroblasts. Int. J. Nanomedicine 2019, 14, 7123–7139. 10.2147/IJN.S211682. PubMed DOI PMC
Clogston J. D.; Patri A. K.. Zeta Potential Measurement. In Characterization of Nanoparticles Intended for Drug Delivery, McNeil S. E., Ed. Humana Press: Totowa, NJ, 2011, pp 63–70.
Kim S. S.; Garg H.; Joshi A.; Manjunath N. Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol. Med. 2009, 15 (11), 491–500. 10.1016/j.molmed.2009.09.001. PubMed DOI PMC
Ferenc M.; Pedziwiatr-Werbicka E.; Nowak K. E.; Klajnert B.; Majoral J.-P.; Bryszewska M. Phosphorus Dendrimers as Carriers of siRNA—Characterisation of Dendriplexes. Molecules 2013, 18 (4), 4451–4466. 10.3390/molecules18044451. PubMed DOI PMC
Shcharbin D.; Pedziwiatr E.; Nowacka O.; Kumar M.; Zaborski M.; Ortega P.; Javier de la Mata F.; Gómez R.; Muñoz-Fernandez M. A.; Bryszewska M. Carbosilane dendrimers NN8 and NN16 form a stable complex with siGAG1. Colloids Surf., B 2011, 83 (2), 388–391. 10.1016/j.colsurfb.2010.11.009. PubMed DOI
Santander-Ortega M. J.; Lozano M. V.; Uchegbu I. F.; Schätzlein A. G.. 6 - Dendrimers for gene therapy. In Polymers and Nanomaterials for Gene Therapy, Narain R., Ed. Woodhead Publishing: 2016, pp 113–146.
Shakya A.; Dougherty C. A.; Xue Y.; Al-Hashimi H. M.; Banaszak Holl M. M. Rapid Exchange Between Free and Bound States in RNA-Dendrimer Polyplexes: Implications on the Mechanism of Delivery and Release. Biomacromolecules 2016, 17 (1), 154–64. 10.1021/acs.biomac.5b01280. PubMed DOI PMC
Albertazzi L.; Serresi M.; Albanese A.; Beltram F. Dendrimer Internalization and Intracellular Trafficking in Living Cells. Mol. Pharmaceutics 2010, 7 (3), 680–688. 10.1021/mp9002464. PubMed DOI
Peng S.-F.; Su C.-J.; Wei M.-C.; Chen C.-Y.; Liao Z.-X.; Lee P.-W.; Chen H.-L.; Sung H.-W. Effects of the nanostructure of dendrimer/DNA complexes on their endocytosis and gene expression. Biomaterials 2010, 31 (21), 5660–5670. 10.1016/j.biomaterials.2010.03.059. PubMed DOI
Pedziwiatr-Werbicka E.; Shcharbin D.; Maly J.; Maly M.; Zaborski M.; Gabara B.; Ortega P.; de la Mata F. J.; Gómez R.; Muñoz-Fernandez M. A.; Klajnert B.; Bryszewska M. Carbosilane Dendrimers are a Non-Viral Delivery System for Antisense Oligonucleotides: Characterization of Dendriplexes. Journal of Biomedical Nanotechnology 2012, 8 (1), 57–73. 10.1166/jbn.2012.1369. PubMed DOI
Shcharbin D.; Pedziwiatr E.; Blasiak J.; Bryszewska M. How to study dendriplexes II: Transfection and cytotoxicity. J. Controlled Release 2010, 141 (2), 110–127. 10.1016/j.jconrel.2009.09.030. PubMed DOI
Santander-Ortega M. J.; de la Fuente M.; Lozano M. V.; Tsui M. L.; Bolton K.; Uchegbu I. F.; Schatzlein A. G. Optimisation of Synthetic Vector Systems for Cancer Gene Therapy – The Role of the Excess of Cationic Dendrimer Under Physiological Conditions. Curr. Top. Med. Chem. 2014, 14 (9), 1172–1181. 10.2174/1568026614666140329231718. PubMed DOI
Ramaswamy C.; Sakthivel T.; Wilderspin A. F.; Florence A. T. Dendriplexes and their characterisation. Int. J. Pharm. 2003, 254 (1), 17–21. 10.1016/S0378-5173(02)00670-1. PubMed DOI
Abdelhady H. G.; Lin Y.-L.; Sun H.; ElSayed M. E. H. Visualizing the Attack of RNase Enzymes on Dendriplexes and Naked RNA Using Atomic Force Microscopy. PLoS One 2013, 8 (4), e6171010.1371/journal.pone.0061710. PubMed DOI PMC
Weber N.; Ortega P.; Clemente M. I.; Shcharbin D.; Bryszewska M.; de la Mata F. J.; Gómez R.; Muñoz-Fernández M. A. Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. J. Controlled Release 2008, 132 (1), 55–64. 10.1016/j.jconrel.2008.07.035. PubMed DOI