The key role of the scaffold on the efficiency of dendrimer nanodrugs
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26169490
PubMed Central
PMC4510975
DOI
10.1038/ncomms8722
PII: ncomms8722
Knihovny.cz E-zdroje
- MeSH
- aza sloučeniny chemie farmakologie MeSH
- biokompatibilní materiály chemie farmakologie MeSH
- bisfosfonáty chemie farmakologie MeSH
- dendrimery chemie farmakologie MeSH
- inhibitory kostní resorpce chemie farmakologie MeSH
- lidé MeSH
- molekulární struktura MeSH
- monocyty účinky léků MeSH
- nanočástice chemie MeSH
- polylysin chemie farmakologie MeSH
- polypropyleny chemie farmakologie MeSH
- průtoková cytometrie MeSH
- silany chemie farmakologie MeSH
- simulace molekulární dynamiky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aza sloučeniny MeSH
- biokompatibilní materiály MeSH
- bisfosfonáty MeSH
- carbosilane MeSH Prohlížeč
- dendrimery MeSH
- inhibitory kostní resorpce MeSH
- PAMAM Starburst MeSH Prohlížeč
- poly(propyleneimine) MeSH Prohlížeč
- polylysin MeSH
- polypropyleny MeSH
- silany MeSH
Dendrimers are well-defined macromolecules whose highly branched structure is reminiscent of many natural structures, such as trees, dendritic cells, neurons or the networks of kidneys and lungs. Nature has privileged such branched structures for increasing the efficiency of exchanges with the external medium; thus, the whole structure is of pivotal importance for these natural networks. On the contrary, it is generally believed that the properties of dendrimers are essentially related to their terminal groups, and that the internal structure plays the minor role of an 'innocent' scaffold. Here we show that such an assertion is misleading, using convergent information from biological data (human monocytes activation) and all-atom molecular dynamics simulations on seven families of dendrimers (13 compounds) that we have synthesized, possessing identical terminal groups, but different internal structures. This work demonstrates that the scaffold of nanodrugs strongly influences their properties, somewhat reminiscent of the backbone of proteins.
Faculty of Science J E Purkinje University Ceske mladeze 8 400 96 Ústí nad Labem Czech Republic
Kazan State Architect and Civil Engineering University Zelenaya 1 Kazan 420043 Russia
Zobrazit více v PubMed
Caminade A. M., Turrin C. O., Laurent R., Ouali A., Delavaux-Nicot B . Dendrimers: Towards Catalytic, Material and Biomedical Uses John Wiley & Sons (2011).
Page D., Zanini D. & Roy R. Macromolecular recognition: Effect of multivalency in the inhibition of binding of yeast mannan to concanavalin A and pea lectins by mannosylated dendrimers. Bioorg. Med. Chem. 4, 1949–1961 (1996). PubMed
Pavan G. M., Danani A., Pricl S. & Smith D. K. Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand ‘sacrifice' and screening can enhance binding. J. Am. Chem. Soc. 131, 9686–9694 (2009). PubMed
Pavan G. M. Modeling the interaction between dendrimers and nucleic acids—a molecular perspective through hierarchical scales. ChemMedChem 9, 2623–2631 (2014). PubMed
Darbre T. & Reymond J. L. Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. Acc. Chem. Res. 39, 925–934 (2006). PubMed
Lee C. C., MacKay J. A., Fréchet J. M. J. & Szoka F. C. Designing dendrimers for biological applications. Nat. Biotechnol. 23, 1517–1526 (2005). PubMed
Mammen M., Choi S. K. & Whitesides G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998). PubMed
Tomalia D. A. Dendrons/dendrimers: quantisized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 6, 456–472 (2010).
Tomalia D. A. et al. A new class of polymers—Starburst dendritic macromolecules. Polym. J. 17, 117–132 (1985).
De Brabander-van den Berg E. M. M. & Meijer E. W. Poly(Propylene Imine) dendrimers—large-scale synthesis by heterogeneously catalyzed hydrogenations. Angew. Chem. Int. Ed. 32, 1308–1311 (1993).
Mynar J. L., Lowery T. J., Wemmer D. E., Pines A. & Fréchet J. M. J. Xenon biosensor amplification via dendrimer-cage supramolecular constructs. J. Am. Chem. Soc. 128, 6334–6335 (2006). PubMed
Juttukonda V. et al. Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. J. Am. Chem. Soc. 128, 420–421 (2006). PubMed
Tomalia D. A., Hall M. & Hedstrand D. M. Starburst dendrimers.3. The importance of branch junction symmetry in the development of topological shell molecules. J. Am. Chem. Soc. 109, 1601–1603 (1987).
Liao X. L., Stellacci F. & McGrath D. V. Photoswitchable flexible and shape-persistent dendrimers: comparison of the interplay between a photochromic azobenzene core and dendrimer structure. J. Am. Chem. Soc. 126, 2181–2185 (2004). PubMed
Merkel O. M. et al. Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjugate Chem. 20, 1799–1806 (2009). PubMed PMC
Jain K., Kesharwani P., Gupta U. & Jain N. K. Dendrimer toxicity: let's meet the challenge. Int. J. Pharm. 394, 122–142 (2010). PubMed
Ginhoux F. & Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014). PubMed
Zolnik B. S., Gonzalez-Fernandez A., Sadrieh N. & Dobrovolskaia M. A. Minireview: nanoparticles and immune system. Endocrinology 151, 458–465 (2010). PubMed PMC
Murray P. J. & Wynn T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011). PubMed PMC
Sica A. & Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012). PubMed PMC
Griffe L. et al. Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimers. Angew. Chem. Int. Ed. 46, 2523–2526 (2007). PubMed
Portevin D. et al. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation for ex-vivo expansion of NK cells from PBMCs and immunotherapy. J. Transl. Med. 7, 82 (2009). PubMed PMC
Poupot M. et al. Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB J. 20, 2339–2351 (2006). PubMed
Fruchon S. et al. Anti-inflammatory and immuno-suppressive activation of human monocytes by a bio-active dendrimer. J. Leukocyte Biol. 85, 553–562 (2009). PubMed
Hayder M. et al. Phosphorus-based dendrimer as nanotherapeutics targeting both inflammation and osteoclastogenesis in experimental arthritis. Sci. Transl. Med. 3, 81ra35 (2011). PubMed
Leah E. Experimental arthritis: dendrimer drug mends monocytes. Nat. Rev. Rheumatol. 7, 376 (2011). PubMed
Lou K.-J. Dendrimer throws a blanket on RA. SciBX 4, , doi:10.1038/scibx.2011.561 (2011).
Rolland O. et al. Efficient synthesis of phosphorus-containing dendrimers capped with isosteric functions of amino-bis(methylene) phosphonic acids. Tetrahedron Lett. 50, 2078–2082 (2009).
Rolland O. et al. Tailored control and optimisation of the number of phosphonic acid termini on phosphorus-containing dendrimers for the ex-vivo activation of human monocytes. Chem. Eur. J. 14, 4836–4850 (2008). PubMed
Wang Y., Guo R., Cao X., Shen M. & Shi X. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 32, 3322–3329 (2011). PubMed
Garber S. B., Kingsbury J. S., Gray B. L. & Hoveyda A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 122, 8168–8179 (2000).
Denkewalter R. G., Kolc J. & Lukasavage W. J. Macromolecular highly branched homogeneous compound based on lysine units. US patent 4,289,872 (1981).
Salamonczyk G. M., Kuznikowski M. & Skowronska A. A divergent synthesis of thiophosphate-based dendrimers. Tetrahedron Lett. 41, 1643–1645 (2000).
Launay N., Caminade A. M., Lahana R. & Majoral J. P. A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew. Chem. Int. Ed. 33, 1589–1592 (1994).
Shafer L. L., McNulty J. A. & Young M. R. Brain activation of monocyte lineage cells: brain-derived soluble factors differentially regulate BV2 microglia and peripheral macrophage immune functions. Neuroimmunomodulation 10, 283–294 (2002). PubMed
Pavan G. M., Barducci A., Albertazzi L. & Parrinello M. Combining metadynamics simulation and experiments to characterize dendrimers in solution. Soft Matter 9, 2593–2597 (2013).
de Groot D., Reek J. N. H., Kamer P. C. J. & van Leeuwen P. W. N. M. Palladium complexes of phosphane-functionalised carbosilane dendrimers as catalysts in a continuous-flow membrane reactor. Eur. J. Org. Chem. 2002, 1085–1095 (2002).
Launay N., Caminade A. M. & Majoral J. P. Synthesis of bowl-shaped dendrimers from generation 1 to generation 8. J. Organomet. Chem. 529, 51–58 (1997).
Case D. A. et al. AMBER 12 University of California (2012).
Garzoni M., Okuro K., Ishii N., Aida T. & Pavan G. M. Structure and shape effects of molecular glue on supramolecular tubulin assemblies. ACS Nano 8, 904–914 (2014). PubMed
Simanek E. E., Enciso A. E. & Pavan G. M. Computational design principles for the discovery of bioactive dendrimers: [s]-triazines and other examples. Exp. Opin. Drug Disc. 8, 1057–1069 (2013). PubMed
Fuentes-Paniagua E. et al. Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Adv. 4, 1256–1265 (2014).
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W. & Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).