The key role of the scaffold on the efficiency of dendrimer nanodrugs

. 2015 Jul 14 ; 6 () : 7722. [epub] 20150714

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26169490

Dendrimers are well-defined macromolecules whose highly branched structure is reminiscent of many natural structures, such as trees, dendritic cells, neurons or the networks of kidneys and lungs. Nature has privileged such branched structures for increasing the efficiency of exchanges with the external medium; thus, the whole structure is of pivotal importance for these natural networks. On the contrary, it is generally believed that the properties of dendrimers are essentially related to their terminal groups, and that the internal structure plays the minor role of an 'innocent' scaffold. Here we show that such an assertion is misleading, using convergent information from biological data (human monocytes activation) and all-atom molecular dynamics simulations on seven families of dendrimers (13 compounds) that we have synthesized, possessing identical terminal groups, but different internal structures. This work demonstrates that the scaffold of nanodrugs strongly influences their properties, somewhat reminiscent of the backbone of proteins.

Zobrazit více v PubMed

Caminade A. M., Turrin C. O., Laurent R., Ouali A., Delavaux-Nicot B . Dendrimers: Towards Catalytic, Material and Biomedical Uses John Wiley & Sons (2011).

Page D., Zanini D. & Roy R. Macromolecular recognition: Effect of multivalency in the inhibition of binding of yeast mannan to concanavalin A and pea lectins by mannosylated dendrimers. Bioorg. Med. Chem. 4, 1949–1961 (1996). PubMed

Pavan G. M., Danani A., Pricl S. & Smith D. K. Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand ‘sacrifice' and screening can enhance binding. J. Am. Chem. Soc. 131, 9686–9694 (2009). PubMed

Pavan G. M. Modeling the interaction between dendrimers and nucleic acids—a molecular perspective through hierarchical scales. ChemMedChem 9, 2623–2631 (2014). PubMed

Darbre T. & Reymond J. L. Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. Acc. Chem. Res. 39, 925–934 (2006). PubMed

Lee C. C., MacKay J. A., Fréchet J. M. J. & Szoka F. C. Designing dendrimers for biological applications. Nat. Biotechnol. 23, 1517–1526 (2005). PubMed

Mammen M., Choi S. K. & Whitesides G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998). PubMed

Tomalia D. A. Dendrons/dendrimers: quantisized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 6, 456–472 (2010).

Tomalia D. A. et al. A new class of polymers—Starburst dendritic macromolecules. Polym. J. 17, 117–132 (1985).

De Brabander-van den Berg E. M. M. & Meijer E. W. Poly(Propylene Imine) dendrimers—large-scale synthesis by heterogeneously catalyzed hydrogenations. Angew. Chem. Int. Ed. 32, 1308–1311 (1993).

Mynar J. L., Lowery T. J., Wemmer D. E., Pines A. & Fréchet J. M. J. Xenon biosensor amplification via dendrimer-cage supramolecular constructs. J. Am. Chem. Soc. 128, 6334–6335 (2006). PubMed

Juttukonda V. et al. Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. J. Am. Chem. Soc. 128, 420–421 (2006). PubMed

Tomalia D. A., Hall M. & Hedstrand D. M. Starburst dendrimers.3. The importance of branch junction symmetry in the development of topological shell molecules. J. Am. Chem. Soc. 109, 1601–1603 (1987).

Liao X. L., Stellacci F. & McGrath D. V. Photoswitchable flexible and shape-persistent dendrimers: comparison of the interplay between a photochromic azobenzene core and dendrimer structure. J. Am. Chem. Soc. 126, 2181–2185 (2004). PubMed

Merkel O. M. et al. Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjugate Chem. 20, 1799–1806 (2009). PubMed PMC

Jain K., Kesharwani P., Gupta U. & Jain N. K. Dendrimer toxicity: let's meet the challenge. Int. J. Pharm. 394, 122–142 (2010). PubMed

Ginhoux F. & Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014). PubMed

Zolnik B. S., Gonzalez-Fernandez A., Sadrieh N. & Dobrovolskaia M. A. Minireview: nanoparticles and immune system. Endocrinology 151, 458–465 (2010). PubMed PMC

Murray P. J. & Wynn T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011). PubMed PMC

Sica A. & Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012). PubMed PMC

Griffe L. et al. Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimers. Angew. Chem. Int. Ed. 46, 2523–2526 (2007). PubMed

Portevin D. et al. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation for ex-vivo expansion of NK cells from PBMCs and immunotherapy. J. Transl. Med. 7, 82 (2009). PubMed PMC

Poupot M. et al. Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB J. 20, 2339–2351 (2006). PubMed

Fruchon S. et al. Anti-inflammatory and immuno-suppressive activation of human monocytes by a bio-active dendrimer. J. Leukocyte Biol. 85, 553–562 (2009). PubMed

Hayder M. et al. Phosphorus-based dendrimer as nanotherapeutics targeting both inflammation and osteoclastogenesis in experimental arthritis. Sci. Transl. Med. 3, 81ra35 (2011). PubMed

Leah E. Experimental arthritis: dendrimer drug mends monocytes. Nat. Rev. Rheumatol. 7, 376 (2011). PubMed

Lou K.-J. Dendrimer throws a blanket on RA. SciBX 4, , doi:10.1038/scibx.2011.561 (2011).

Rolland O. et al. Efficient synthesis of phosphorus-containing dendrimers capped with isosteric functions of amino-bis(methylene) phosphonic acids. Tetrahedron Lett. 50, 2078–2082 (2009).

Rolland O. et al. Tailored control and optimisation of the number of phosphonic acid termini on phosphorus-containing dendrimers for the ex-vivo activation of human monocytes. Chem. Eur. J. 14, 4836–4850 (2008). PubMed

Wang Y., Guo R., Cao X., Shen M. & Shi X. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 32, 3322–3329 (2011). PubMed

Garber S. B., Kingsbury J. S., Gray B. L. & Hoveyda A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 122, 8168–8179 (2000).

Denkewalter R. G., Kolc J. & Lukasavage W. J. Macromolecular highly branched homogeneous compound based on lysine units. US patent 4,289,872 (1981).

Salamonczyk G. M., Kuznikowski M. & Skowronska A. A divergent synthesis of thiophosphate-based dendrimers. Tetrahedron Lett. 41, 1643–1645 (2000).

Launay N., Caminade A. M., Lahana R. & Majoral J. P. A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew. Chem. Int. Ed. 33, 1589–1592 (1994).

Shafer L. L., McNulty J. A. & Young M. R. Brain activation of monocyte lineage cells: brain-derived soluble factors differentially regulate BV2 microglia and peripheral macrophage immune functions. Neuroimmunomodulation 10, 283–294 (2002). PubMed

Pavan G. M., Barducci A., Albertazzi L. & Parrinello M. Combining metadynamics simulation and experiments to characterize dendrimers in solution. Soft Matter 9, 2593–2597 (2013).

de Groot D., Reek J. N. H., Kamer P. C. J. & van Leeuwen P. W. N. M. Palladium complexes of phosphane-functionalised carbosilane dendrimers as catalysts in a continuous-flow membrane reactor. Eur. J. Org. Chem. 2002, 1085–1095 (2002).

Launay N., Caminade A. M. & Majoral J. P. Synthesis of bowl-shaped dendrimers from generation 1 to generation 8. J. Organomet. Chem. 529, 51–58 (1997).

Case D. A. et al. AMBER 12 University of California (2012).

Garzoni M., Okuro K., Ishii N., Aida T. & Pavan G. M. Structure and shape effects of molecular glue on supramolecular tubulin assemblies. ACS Nano 8, 904–914 (2014). PubMed

Simanek E. E., Enciso A. E. & Pavan G. M. Computational design principles for the discovery of bioactive dendrimers: [s]-triazines and other examples. Exp. Opin. Drug Disc. 8, 1057–1069 (2013). PubMed

Fuentes-Paniagua E. et al. Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Adv. 4, 1256–1265 (2014).

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W. & Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...