Genomic Insights into Methicillin-Resistant Staphylococcus aureus spa Type t899 Isolates Belonging to Different Sequence Types

. 2021 Feb 26 ; 87 (6) : . [epub] 20210226

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33397701

Methicillin-resistant Staphylococcus aureus (MRSA) presenting spa type t899 is commonly associated with sequence type 9 (ST9) but is also increasingly linked to ST398. This study provides genomic insight into the diversity of t899 isolates using core genome multilocus sequence typing (cgMLST), single nucleotide polymorphism (SNP)-based phylogeny, and the description of selected antimicrobial resistance and virulence markers. The SNP-based phylogenic tree showed that isolates sharing the same spa type (t899) but different STs highly diverged in their core and accessory genomes, revealing discriminant antimicrobial resistance (AMR) and virulence markers. Our results highlighted the idea that in a surveillance context where only spa typing is used, an additional multiplex PCR for the detection of the tet(M), sak, and seg genes would be valuable in helping distinguish ST9 from ST398 isolates on a routine basis.IMPORTANCE This study showed the genetic diversity and population structure of S. aureus presenting the same spa type, t899, but belonging to different STs. Our findings revealed that these isolates vary deeply in their core and accessory genomes, contrary to what is regularly inferred from studies using spa typing only. Given that identical spa types can be associated with different STs and that spa typing only is not appropriate for S. aureus isolates that have undergone major recombination events which include the passage of the spa gene (such as in t899-positive MRSA), the combination of both MLST and spa typing methods is recommended. However, spa typing alone is still largely used in surveillance studies and basic characterization. Our data suggest that additional markers, such as tet(M), sak, and seg genes, could be implemented in an easy and inexpensive manner in order to identify S. aureus lineages with a higher accuracy.

Zobrazit více v PubMed

Armand-Lefevre L, Ruimy R, Andremont A. 2005. Clonal comparison of Staphylococcus from healthy pig farmers, human controls, and pigs. Emerg Infect Dis 11:711–714. doi:10.3201/eid1105.040866. PubMed DOI PMC

Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11:1965–1966. doi:10.3201/eid1112.050428. PubMed DOI PMC

Butaye P, Argudín MA, Smith TC. 2016. Livestock-associated MRSA and its current evolution. Curr Clin Micro Rpt 3:19–31. doi:10.1007/s40588-016-0031-9. DOI

Ye X, Wang X, Fan Y, Peng Y, Li L, Li S, Huang J, Yao Z, Chen S. 2016. Genotypic and phenotypic markers of livestock-associated methicillin-resistant Staphylococcus aureus CC9 in humans. Appl Environ Microbiol 82:3892–3899. doi:10.1128/AEM.00091-16. PubMed DOI PMC

Cui S, Li J, Hu C, Jin S, Li F, Guo Y, Ran L, Ma Y. 2009. Isolation and characterization of methicillin-resistant Staphylococcus aureus from swine and workers in China. J Antimicrob Chemother 64:680–683. doi:10.1093/jac/dkp275. PubMed DOI

Frana TS, Beahm AR, Hanson BM, Kinyon JM, Layman LL, Karriker LA, Ramirez A, Smith TC. 2013. Isolation and characterization of methicillin-resistant Staphylococcus aureus from pork farms and visiting veterinary students. PLoS One 8:e53738. doi:10.1371/journal.pone.0053738. PubMed DOI PMC

Hau SJ, Allué-Guardia A, Rusconi B, Haan JS, Davies PR, Frana TS, Eppinger M, Nicholson TL. 2018. Single nucleotide polymorphism analysis indicates genetic distinction and reduced diversity of swine-associated methicillin resistant Staphylococcus aureus(MRSA) ST5 isolates compared to clinical MRSA ST5 isolates. Front Microbiol 9:2078. doi:10.3389/fmicb.2018.02078. PubMed DOI PMC

Guardabassi L, O'Donoghue M, Moodley A, Ho J, Boost M. 2009. Novel lineage of methicillin-resistant Staphylococcus aureus, Hong Kong. Emerg Infect Dis 15:1998–2000. doi:10.3201/eid1512.090378. PubMed DOI PMC

Larsen J, Stegger M, Andersen PS, Petersen A, Larsen AR, Westh H, Agersø Y, Fetsch A, Kraushaar B, Käsbohrer A, Feβler AT, Schwarz S, Cuny C, Witte W, Butaye P, Denis O, Haenni M, Madec JY, Jouy E, Laurent F, Battisti A, Franco A, Alba P, Mammina C, Pantosti A, Monaco M, Wagenaar JA, De Boer E, Van Duijkeren E, Heck M, Domínguez L, Torres C, Zarazaga M, Price LB, Skov RL. 2016. Evidence for human adaptation and foodborne transmission of livestock-associated methicillin-resistant Staphylococcus aureus. Clin Infect Dis 63:1349–1352. doi:10.1093/cid/ciw532. PubMed DOI PMC

Sharma M, AbuOun M, Nunez-Garcia J, Rogers J, Welchman D, Teale C, Anjum MF, Kearns AM, Pichon B, Foster G, Robb A, McMillan M. 2018. MRSA spa type t899 from food animals in the UK. Vet Rec 182:697–698. doi:10.1136/vr.k2576. PubMed DOI

Pan A, Battisti A, Zoncada A, Bernieri F, Boldini M, Franco A, Giorgi M, Iurescia M, Lorenzotti S, Martinotti M, Monaci M, Pantosti A. 2009. Community-acquired methicillin-resistant Staphylococcus aureus ST398 infection, Italy. Emerg Infect Dis 15:845–847. doi:10.3201/eid1505.081417. PubMed DOI PMC

Monaco M, Pedroni P, Sanchini A, Bonomini A, Indelicato A, Pantosti A. 2013. Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming. BMC Infect Dis 13:258. doi:10.1186/1471-2334-13-258. PubMed DOI PMC

Larsen J, Petersen A, Larsen AR, Sieber RN, Stegger M, Koch A, Aarestrup FM, Price LB, Skov RL, Johansen HK, Westh H, Pedersen M, Jensen US, Jensen MLS, Chen M, Strøbæk S, Østergaard C, Lomborg S, Ellermann-Eriksen S, Ripadal P, Danish MRSA Study Group. 2017. Emergence of livestock-associated methicillin-resistant Staphylococcus aureus bloodstream infections in Denmark. Clin Infect Dis 65:1072–1076. doi:10.1093/cid/cix504. PubMed DOI PMC

Köck R, Apel J, Gerth C, Gundlach S, Lambrecht C, Josef TS. 2010. Prevalence of MRSA CC398 in pig holdings and human hospital patients in North Rhine-Westphalia, Germany. Methods 3:2010.

Köck R, Schaumburg F, Mellmann A, Köksal M, Jurke A, Becker K, Friedrich AW. 2013. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS One 8:e55040. doi:10.1371/journal.pone.0055040. PubMed DOI PMC

Schulz J, Boklund A, Toft N, Halasa T. 2018. Drivers for livestock-associated methicillin-resistant Staphylococcus aureus spread among Danish pig herds—a simulation study. Sci Rep 8:1–11. doi:10.1038/s41598-018-34951-1. PubMed DOI PMC

Tegegne HA, Koláčková I, Karpíšková R. 2017. Diversity of livestock associated methicillin-resistant Staphylococcus aureus. Asian Pac J Trop Med 10:929–931. doi:10.1016/j.apjtm.2017.08.013. PubMed DOI

Pirolo M, Gioffrè A, Visaggio D, Gherardi M, Pavia G, Samele P, Ciambrone L, Di Natale R, Spatari G, Casalinuovo F, Visca P. 2019. Prevalence, molecular epidemiology, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus from swine in southern Italy. BMC Microbiol 19:1–12. doi:10.1186/s12866-019-1422-x. PubMed DOI PMC

Battisti A, Franco A, Merialdi G, Hasman H, Iurescia M, Lorenzetti R, Feltrin F, Zini M, Aarestrup FM. 2010. Heterogeneity among methicillin-resistant Staphylococcus aureus from Italian pig finishing holdings. Vet Microbiol 142:361–366. doi:10.1016/j.vetmic.2009.10.008. PubMed DOI

Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, Chow H, Ip M, Jatzwauk L, Jonas D, Kadlec K, Kearns A, Laurent F, O'Brien FG, Pearson J, Ruppelt A, Schwarz S, Scicluna E, Slickers P, Tan H-L, Weber S, Ehricht R. 2011. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6:e17936. doi:10.1371/journal.pone.0017936. PubMed DOI PMC

Stone K. 2017. Risk assessment on methicillin-resistant Staphylococcus aureus (MRSA), with a focus on livestock-associated MRSA, in the UK food chain. Food Standards Agency, London, United Kingdom.

Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T, Waters AE, Foster JT, Schupp J, Gillece J, Driebe E, Liu CM, Springer B, Zdovc I, Battisti A, Franco A, ŻMudzki J, Schwarz S, Butaye P, Jouy E, Pomba C, Porrero MC, Ruimy R, Smith TC, Robinson DA, Weese JS, Arriola CS, Yu F, Laurent F, Keim P, Skov R, Aarestrup FM. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3:e00305-11. doi:10.1128/mBio.00305-11. PubMed DOI PMC

Yamamoto T, Takano T, Higuchi W, Iwao Y, Singur O, Reva I, Otsuka Y, Nakayashiki T, Mori H, Reva G, Kuznetsov V, Potapov V. 2012. Comparative genomics and drug resistance of a geographic variant of ST239 methicillin-resistant Staphylococcus aureus emerged in Russia. PLoS One 7:e29187. doi:10.1371/journal.pone.0029187. PubMed DOI PMC

Thomas JC, Godfrey PA, Feldgarden M, Robinson DA. 2012. Draft genome sequences of Staphylococcus aureus sequence type 34 (ST34) and ST42 hybrids. J Bacteriol 194:2740–2741. doi:10.1128/JB.00248-12. PubMed DOI PMC

Bartels MD, Worning P, Andersen LP, Bes M, Enger H, Ås CG, Hansen TA, Holzknecht BJ, Larssen KW, Laurent F, Mäkitalo B, Pichon B, Svartström O, Westh H. 2020. Repeated introduction and spread of the MRSA clone t304/ST6 in northern Europe. Clin Microbiol Infect doi:10.1016/j.cmi.2020.05.004. PubMed DOI

Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, van Belkum A, Asadollahi K, Dadashi M, Darban-Sarokhalil D. 2018. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and -susceptible Staphylococcus aureus around the world: a review. Front Microbiol 9:163. doi:10.3389/fmicb.2018.00163. PubMed DOI PMC

Bosch T, Pluister GN, van Luit M, Landman F, van Santen-Verheuvel M, Schot C, Witteveen S, van der Zwaluw K, Heck MEOC, Schouls LM. 2015. Multiple-locus variable number tandem repeat analysis is superior to spa typing and sufficient to characterize MRSA for surveillance purposes. Future Microbiol 10:1155–1162. doi:10.2217/fmb.15.35. PubMed DOI

Darban-Sarokhalil D, Khoramrooz SS, Marashifard M, Malek Hosseini SAA, Parhizgari N, Yazdanpanah M, Gharibpour F, Mirzaii M, Sharifi B, Haeili M. 2016. Molecular characterization of Staphylococcus aureus isolates from southwest of Iran using spa and SCCmec typing methods. Microb Pathog 98:88–92. doi:10.1016/j.micpath.2016.07.003. PubMed DOI

Koreen L, Ramaswamy SV, Graviss EA, Naidich S, Musser JM, Kreiswirth BN. 2004. spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799. doi:10.1128/jcm.42.2.792-799.2004. PubMed DOI PMC

O'Hara FP, Suaya JA, Ray GT, Baxter R, Brown ML, Mera RM, Close NM, Thomas E, Amrine-Madsen H. 2016. spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microb Drug Resist 22:88–96. doi:10.1089/mdr.2014.0238. PubMed DOI PMC

Ruppitsch W, Indra A, Stöger A, Mayer B, Stadlbauer S, Wewalka G, Allerberger F. 2006. Classifying spa types in complexes improves interpretation of typing results for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 44:2442–2448. doi:10.1128/JCM.00113-06. PubMed DOI PMC

Cuny C, Wieler L, Witte W. 2015. Livestock-associated MRSA: the impact on humans. Antibiotics (Basel) 4:521–543. doi:10.3390/antibiotics4040521. PubMed DOI PMC

McCarthy AJ, Witney AA, Gould KA, Moodley A, Guardabassi L, Voss A, Denis O, Broens EM, Hinds J, Lindsay JA. 2011. The distribution of mobile genetic elements (MGEs) in MRSA CC398 is associated with both host and country. Genome Biol Evol 3:1164–1174. doi:10.1093/gbe/evr092. PubMed DOI PMC

Hau SJ, Sun J, Davies PR, Frana TS, Nicholson TL. 2015. Comparative prevalence of immune evasion complex genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates from swine, swine facilities, humans with swine contact, and humans with no swine contact. PLoS One 10:e0142832. doi:10.1371/journal.pone.0142832. PubMed DOI PMC

Gordon NC, Price JR, Cole K, Everitt R, Morgan M, Finney J, Kearns AM, Pichon B, Young B, Wilson DJ, Llewelyn MJ, Paul J, Peto TEA, Crook DW, Walker AS, Golubchik T. 2014. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol 52:1182–1191. doi:10.1128/JCM.03117-13. PubMed DOI PMC

Liu B, Pop M. 2009. ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:443–447. PubMed PMC

Rossney AS, Shore AC, Morgan PM, Fitzgibbon MM, O'Connell B, Coleman DC. 2007. The emergence and importation of diverse genotypes of methicillin-resistant Staphylococcus aureus (MRSA) harboring the panton-valentine leukocidin gene (pvl) reveal that pvl is a poor marker for community-acquired MRSA strains in Ireland. J Clin Microbiol 45:2554–2563. doi:10.1128/JCM.00245-07. PubMed DOI PMC

David MZ, Taylor A, Lynfield R, Boxrud DJ, Short G, Zychowski D, Boyle-Vavra S, Daum RS. 2013. Comparing pulsed-field gel electrophoresis with multilocus sequence typing, spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and PCR for Panton-Valentine leukocidin, arcA, and opp3 in methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol 51:814–819. doi:10.1128/JCM.02429-12. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC

Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A. 2014. Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol 52:2365–2370. doi:10.1128/JCM.00262-14. PubMed DOI PMC

Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. 2014. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 9:e104984. doi:10.1371/journal.pone.0104984. PubMed DOI PMC

Letunic I, Bork P. 2019. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239. PubMed DOI PMC

Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261. PubMed DOI PMC

Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510. doi:10.1128/JCM.03617-13. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...