Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo
Jazyk angličtina Země Řecko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33300056
PubMed Central
PMC7723164
DOI
10.3892/mmr.2020.11738
PII: 99
Knihovny.cz E-zdroje
- Klíčová slova
- extracellular matrix, fibroblast, keratinocyte, lectin, regeneration,
- MeSH
- fibroblasty metabolismus patologie MeSH
- galektiny biosyntéza MeSH
- kolagen biosyntéza MeSH
- krevní proteiny biosyntéza MeSH
- lidé MeSH
- pevnost v tahu * MeSH
- rány a poranění metabolismus patologie MeSH
- regulace genové exprese * MeSH
- škára metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galektiny MeSH
- kolagen MeSH
- krevní proteiny MeSH
- LGALS3 protein, human MeSH Prohlížeč
Understanding the molecular and cellular processes in skin wound healing can pave the way for devising innovative concepts by turning the identified natural effectors into therapeutic tools. Based on the concept of broad‑scale engagement of members of the family of galactoside‑binding lectins (galectins) in pathophysiological processes, such as cancer or tissue repair/regeneration, the present study investigated the potential of galectins‑1 (Gal‑1) and ‑3 (Gal‑3) in wound healing. Human dermal fibroblasts, which are key cells involved in skin wound healing, responded to galectin exposure (Gal‑1 at 300 or Gal‑3 at 600 ng/ml) with selective changes in gene expression among a panel of 84 wound‑healing‑related genes, as well as remodeling of the extracellular matrix. In the case of Gal‑3, positive expression of Ki67 and cell number increased when using a decellularized matrix produced by Gal‑3‑treated fibroblasts as substrate for culture of interfollicular keratinocytes. In vivo wounds were topically treated with 20 ng/ml Gal‑1 or ‑3, and collagen score was found to be elevated in excisional wound repair in rats treated with Gal‑3. The tensile strength measured in incisions was significantly increased from 79.5±17.5 g/mm2 in controls to 103.1±21.4 g/mm2 after 21 days of healing. These data warrant further testing mixtures of galectins and other types of compounds, for example a combination of galectins and TGF‑β1.
Zobrazit více v PubMed
Gaylarde PM, Sarkany I. Cell migration and DNA synthesis in organ culture of human skin. Br J Dermatol. 1975;92:375–380. doi: 10.1111/j.1365-2133.1975.tb03096.x. PubMed DOI
Donaldson DJ, Mason JM. Inhibition of epidermal cell migration by concanavalin A in skin wounds of the adult newt. J Exp Zool. 1977;200:55–64. doi: 10.1002/jez.1402000108. PubMed DOI
Harrison FL, Chesterton CJ. Factors mediating cell-cell recognition and adhesion. Galaptins, a recently discovered class of bridging molecules. FEBS Lett. 1980;122:157–165. doi: 10.1016/0014-5793(80)80428-5. PubMed DOI
Barondes SH. Galectins: A personal overview. Trends Glycosci Glycotechnol. 1997;9:1–7. doi: 10.4052/tigg.9.1. DOI
Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta. 1999;1473:172–185. doi: 10.1016/S0304-4165(99)00177-4. PubMed DOI
Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002;1572:263–273. doi: 10.1016/S0304-4165(02)00313-6. PubMed DOI
Thiemann S, Baum LG. Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol. 2016;34:243–264. doi: 10.1146/annurev-immunol-041015-055402. PubMed DOI
Kaltner H, Toegel S, Caballero GG, Manning JC, Ledeen RW, Gabius HJ. Galectins: Their network and roles in immunity/tumor growth control. Histochem Cell Biol. 2017;147:239–256. doi: 10.1007/s00418-016-1522-8. PubMed DOI
Sato S. Cytosolic galectins and their release and roles as carbohydrate-binding proteins in host-pathogen interaction. Trends Glycosci Glycotechnol. 2018;30:SE199–SE209. doi: 10.4052/tigg.1739.1SE. DOI
de Jong CGHM, Gabius HJ, Baron W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci. 2020;77:1289–1317. doi: 10.1007/s00018-019-03327-7. PubMed DOI PMC
García Caballero G, Kaltner H, Kutzner TJ, Ludwig AK, Manning JC, Schmidt S, Sinowatz F, Gabius HJ. How galectins have become multifunctional proteins. Histol Histopathol. 2020;35:509–539. PubMed
Kutzner TJ, Higuero AM, Süssmair M, Kopitz J, Hingar M, Díez-Revuelta N, Caballero GG, Kaltner H, Lindner I, Abad-Rodríguez J, et al. How presence of a signal peptide affects human galectins-1 and −4: Clues to explain common absence of a leader sequence among adhesion/growth-regulatory galectins. Biochim Biophys Acta Gen Subj. 2020;1864:129449. doi: 10.1016/j.bbagen.2019.129449. PubMed DOI
Flotte TJ, Springer TA, Thorbecke GJ. Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets. Am J Pathol. 1983;111:112–124. PubMed PMC
Roff CF, Rosevear PR, Wang JL, Barker R. Identification of carbohydrate-binding proteins from mouse and human fibroblasts. Biochem J. 1983;211:625–629. doi: 10.1042/bj2110625. PubMed DOI PMC
Cowles EA, Moutsatsos IK, Wang JL, Anderson RL. Expression of carbohydrate binding protein 35 in human fibroblasts: Comparisons between cells with different proliferative capacities. Exp Gerontol. 1989;24:577–585. doi: 10.1016/0531-5565(89)90061-2. PubMed DOI
Wollenberg A, de la Salle H, Hanau D, Liu FT, Bieber T. Human keratinocytes release the endogenous beta-galactoside-binding soluble lectin immunoglobulin E (IgE-binding protein) which binds to Langerhans cells where it modulates their binding capacity for IgE glycoforms. J Exp Med. 1993;178:777–785. doi: 10.1084/jem.178.3.777. PubMed DOI PMC
Konstantinov KN, Shames B, Izuno G, Liu FT. Expression of epsilon BP, a beta-galactoside-binding soluble lectin, in normal and neoplastic epidermis. Exp Dermatol. 1994;3:9–16. doi: 10.1111/j.1600-0625.1994.tb00260.x. PubMed DOI
Holiková Z, Smetana K, Jr, Bartunková J, Dvoránková B, Kaltner H, Gabius HJ. Human epidermal langerhans cells are selectively recognized by galectin-3 but not by galectin-1. Folia Biol (Praha) 2000;46:195–198. PubMed
Larsen L, Chen HY, Saegusa J, Liu FT. Galectin-3 and the skin. J Dermatol Sci. 2011;64:85–91. doi: 10.1016/j.jdermsci.2011.07.008. PubMed DOI PMC
Pepe D, Elliott CG, Forbes TL, Hamilton DW. Detection of galectin-3 and localization of advanced glycation end products (AGE) in human chronic skin wounds. Histol Histopathol. 2014;29:251–258. PubMed
Walker JT, Elliott CG, Forbes TL, Hamilton DW. Genetic deletion of galectin-3 does not impair full-thickness excisional skin healing. J Invest Dermatol. 2016;136:1042–1050. doi: 10.1016/j.jid.2016.01.014. PubMed DOI
McLeod K, Walker JT, Hamilton DW. Galectin-3 regulation of wound healing and fibrotic processes: Insights for chronic skin wound therapeutics. J Cell Commun Signal. 2018;12:281–287. doi: 10.1007/s12079-018-0453-7. PubMed DOI PMC
Wu NL, Liu FT. The expression and function of galectins in skin physiology and pathology. Exp Dermatol. 2018;27:217–226. doi: 10.1111/exd.13512. PubMed DOI
Filer A, Bik M, Parsonage GN, Fitton J, Trebilcock E, Howlett K, Cook M, Raza K, Simmons DL, Thomas AM, et al. Galectin-3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 2009;60:1604–1614. doi: 10.1002/art.24574. PubMed DOI PMC
Weinmann D, Schlangen K, André S, Schmidt S, Walzer SM, Kubista B, Windhager R, Toegel S, Gabius HJ. Galectin-3 induces a pro-degradative/inflammatory gene signature in human chondrocytes, teaming up with galectin-1 in osteoarthritis pathogenesis. Sci Rep. 2016;6:39112. doi: 10.1038/srep39112. PubMed DOI PMC
Weinmann D, Kenn M, Schmidt S, Schmidt K, Walzer SM, Kubista B, Windhager R, Schreiner W, Toegel S, Gabius HJ. Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and −3. Cell Mol Life Sci. 2018;75:4187–4205. doi: 10.1007/s00018-018-2856-2. PubMed DOI PMC
Cada Z, Smetana K, Jr, Lacina L, Plzáková Z, Stork J, Kaltner H, Russwurm R, Lensch M, André S, Gabius HJ. Immunohistochemical fingerprinting of the network of seven adhesion/growth-regulatory lectins in human skin and detection of distinct tumor-associated alterations. Folia Biol (Praha) 2009;55:145–152. PubMed
Klíma J, Lacina L, Dvorankova B, Herrmann D, Carnwath JW, Niemann H, Kaltner H, André S, Motlík J, Gabius HJ, Smetana K., Jr Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiol Res. 2009;58:873–884. PubMed
Gál P, Vasilenko T, Kostelniková M, Jakubco J, Kovác I, Sabol F, André S, Kaltner H, Gabius HJ, Smetana K., Jr Open wound healing in vivo: Monitoring binding and presence of adhesion/growth-regulatory galectins in rat skin during the course of complete re-epithelialization. Acta Histochem Cytochem. 2011;44:191–199. doi: 10.1267/ahc.11014. PubMed DOI PMC
Dvoránková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, Kaltner H, André S, Gabius HJ, Sykova E, Smetana K., Jr Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI
Gabius HJ. Influence of type of linkage and spacer on the interaction of beta-galactoside-binding proteins with immobilized affinity ligands. Anal Biochem. 1990;189:91–94. doi: 10.1016/0003-2697(90)90050-J. PubMed DOI
Sarter K, André S, Kaltner H, Lensch M, Schulze C, Urbonaviciute V, Schett G, Herrmann M, Gabius HJ. Detection and chromatographic removal of lipopolysaccharide in preparations of multifunctional galectins. Biochem Biophys Res Commun. 2009;379:155–159. doi: 10.1016/j.bbrc.2008.12.024. PubMed DOI
Kopitz J, Vértesy S, André S, Fiedler S, Schnölzer M, Gabius HJ. Human chimera-type galectin-3: Defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation. Biochimie. 2014;104:90–99. doi: 10.1016/j.biochi.2014.05.010. PubMed DOI
García Caballero G, Kaltner H, Michalak M, Shilova N, Yegres M, André S, Ludwig AK, Manning JC, Schmidt S, Schnölzer M, et al. Chicken GRIFIN: A homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie. 2016;128-129:34–47. doi: 10.1016/j.biochi.2016.06.001. PubMed DOI
Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell. 1975;6:331–343. doi: 10.1016/S0092-8674(75)80001-8. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Perzelova V, Sabol F, Vasilenko T, Novotný M, Kováč I, Slezák M, Ďurkáč J, Hollý M, Pilátová M, Szabo P, et al. Pharmacological activation of estrogen receptors-α and -β differentially modulates keratinocyte differentiation with functional impact on wound healing. Int J Mol Med. 2016;37:21–28. doi: 10.3892/ijmm.2015.2351. PubMed DOI PMC
Kovac I, Melegova N, Coma M, Takáč P, Kováčová K, Hollý M, Ďurkáč J, Urban L, Gurbáľová M, Švajdlenka E, et al. Aesculus hippocastanum L. extract does not induce fibroblast to myofibroblast conversion but increases extracellular matrix production in vitro leading to increased wound tensile strength in rats. Molecules. 2020;25:1917. doi: 10.3390/molecules25081917. PubMed DOI PMC
Kovac I, Durkac J, Holly M, Jakubčová K, Peržeľová V, Mučaji P, Švajdlenka E, Sabol F, Legáth J, Belák J, et al. Plantago lanceolata L. water extract induces transition of fibroblasts into myofibroblasts and increases tensile strength of healing skin wounds. J Pharm Pharmacol. 2015;67:117–125. doi: 10.1111/jphp.12316. PubMed DOI
Sabol F, Vasilenko T, Novotny M, Tomori Z, Bobrov N, Zivčák J, Hudák R, Gál P. Intradermal running suture versus 3M™ Vetbond™ tissue adhesive for wound closure in rodents: A biomechanical and histological study. Eur Surg Res. 2010;45:321–326. doi: 10.1159/000320837. PubMed DOI
Gál P, Toporcer T, Vidinsky B, Hudak R, Zivcak J, Sabo J. Simple interrupted percutaneous suture versus intradermal running suture for wound tensile strength measurement in rats: A technical note. Eur Surg Res. 2009;43:61–65. doi: 10.1159/000219214. PubMed DOI
Koshizuka S, Kanazawa K, Kobayashi N, Takazawa I, Waki Y, Shibusawa H, Shumiya S. The beneficial effects of recombinant human insulin-like growth factor-I (IGF-I) on wound healing in severely wounded senescent mice. Surg Today. 1997;27:946–952. doi: 10.1007/BF02388144. PubMed DOI
Cho CH, Sung HK, Kim KT, Cheon HG, Oh GT, Hong HJ, Yoo OJ, Koh GY. COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci USA. 2006;103:4946–4951. doi: 10.1073/pnas.0506352103. PubMed DOI PMC
Quirinia A, Viidik A. The effect of recombinant basic fibroblast growth factor (bFGF) in fibrin adhesive vehicle on the healing of ischaemic and normal incisional skin wounds. Scand J Plast Reconstr Surg Hand Surg. 1998;32:9–18. doi: 10.1080/02844319850158903. PubMed DOI
Toegel S, Weinmann D, André S, Walzer SM, Bilban M, Schmidt S, Chiari C, Windhager R, Krall C, Bennani-Baiti IM, Gabius HJ. Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J Immunol. 2016;196:1910–1921. doi: 10.4049/jimmunol.1501165. PubMed DOI
Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG, Raz A. Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and −9. Biochemistry. 1994;33:14109–14114. doi: 10.1021/bi00251a020. PubMed DOI
Sundqvist M, Welin A, Elmwall J, Osla V, Nilsson UJ, Leffler H, Bylund J, Karlsson A. Galectin-3 type-C self-association on neutrophil surfaces: The carbohydrate recognition domain regulates cell function. J Leukoc Biol. 2018;103:341–353. doi: 10.1002/JLB.3A0317-110R. PubMed DOI
Advedissian T, Proux-Gillardeaux V, Nkosi R, Peyret G, Nguyen T, Poirier F, Viguier M, Deshayes F. E-cadherin dynamics is regulated by galectin-7 at epithelial cell surface. Sci Rep. 2017;7:17086. doi: 10.1038/s41598-017-17332-y. PubMed DOI PMC
Kyriakides TR, Wulsin D, Skokos EA, Fleckman P, Pirrone A, Shipley JM, Senior RM, Bornstein P. Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis. Matrix Biol. 2009;28:65–73. doi: 10.1016/j.matbio.2009.01.001. PubMed DOI PMC
Kim MH, Wu WH, Choi JH, Kim J, Jun JH, Ko Y, Lee JH. Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts. Wound Repair Regen. 2018;26((Suppl 1)):S9–S18. doi: 10.1111/wrr.12579. PubMed DOI
Liu W, Hsu DK, Chen HY, Yang RY, Carraway KL, III, Isseroff RR, Liu FT. Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. J Invest Dermatol. 2012;132:2828–2837. doi: 10.1038/jid.2012.211. PubMed DOI PMC
Kershenobich Stalnikowitz D, Weissbrod AB. Liver fibrosis and inflammation. A review. Ann Hepatol. 2003;2:159–163. doi: 10.1016/S1665-2681(19)32127-1. PubMed DOI
Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009;19:500–510. doi: 10.1111/j.1600-0838.2009.00986.x. PubMed DOI
Kjaer M, Magnusson P, Krogsgaard M, Boysen Møller J, Olesen J, Heinemeier K, Hansen M, Haraldsson B, Koskinen S, Esmarck B, Langberg H. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat. 2006;208:445–450. doi: 10.1111/j.1469-7580.2006.00549.x. PubMed DOI PMC
Pena E, de la Torre R, Arderiu G, Slevin M, Badimon L. mCRP triggers angiogenesis by inducing F3 transcription and TF signalling in microvascular endothelial cells. Thromb Haemost. 2017;117:357–370. doi: 10.1160/TH16-07-0524. PubMed DOI
Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius HJ. Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem. 2001;276:35917–35923. doi: 10.1074/jbc.M105135200. PubMed DOI
Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius HJ. Network analysis of adhesion/growth-regulatory galectins and their binding sites in adult chicken retina and choroid. J Anat. 2017;231:23–37. doi: 10.1111/joa.12612. PubMed DOI PMC
García Caballero G, Schmidt S, Schnölzer M, Schlötzer-Schrehardt U, Knospe C, Ludwig AK, Manning JC, Muschler P, Kaltner H, Kopitz J, Gabius HJ. Chicken GRIFIN: Binding partners, developmental course of localization and activation of its lens-specific gene expression by L-Maf/Pax6. Cell Tissue Res. 2019;375:665–683. doi: 10.1007/s00441-018-2931-x. PubMed DOI
García Caballero G, Schmidt S, Manning JC, Michalak M, Schlötzer-Schrehardt U, Ludwig AK, Kaltner H, Sinowatz F, Schnölzer M, Kopitz J, Gabius HJ. Chicken lens development: Complete signature of expression of galectins during embryogenesis and evidence for their complex formation with α-, β-, δ- and τ-crystallins, N-CAM, and N-cadherin obtained by affinity chromatography. Cell Tissue Res. 2020;379:13–35. doi: 10.1007/s00441-019-03129-0. PubMed DOI
Gabius HJ. How to crack the sugar code. Folia Biol (Praha) 2017;63:121–131. PubMed
Kopitz J, Xiao Q, Ludwig AK, Romero A, Michalak M, Sherman SE, Zhou X, Dazen C, Vértesy S, Kaltner H, et al. Reaction of a programmable glycan presentation of glycodendrimersomes and cells with engineered human lectins to show the sugar functionality of the cell surface. Angew Chem Int Ed Engl. 2017;56:14677–14681. doi: 10.1002/anie.201708237. PubMed DOI
Ludwig AK, Michalak M, Xiao Q, Gilles U, Medrano FJ, Ma H, FitzGerald FG, Hasley WD, Melendez-Davila A, Liu M, et al. Design-functionality relationships for adhesion/growth-regulatory galectins. Proc Natl Acad Sci USA. 2019;116:2837–2842. doi: 10.1073/pnas.1813515116. PubMed DOI PMC
Ludwig AK, Kaltner H, Kopitz J, Gabius HJ. Lectinology 4.0: Altering modular (ga)lectin display for functional analysis and biomedical applications. Biochim Biophys Acta Gen Subj. 2019;1863:935–940. doi: 10.1016/j.bbagen.2019.03.005. PubMed DOI
Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365:495–506. doi: 10.1007/s00441-016-2464-0. PubMed DOI PMC
Haensel D, Dai X. Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading. Dev Dyn. 2018;247:473–480. doi: 10.1002/dvdy.24561. PubMed DOI PMC
Smetana K, Jr, André S, Kaltner H, Kopitz J, Gabius HJ. Context-dependent multifunctionality of galectin-1: A challenge for defining the lectin as therapeutic target. Expert Opin Ther Targets. 2013;17:379–392. doi: 10.1517/14728222.2013.750651. PubMed DOI
Romero A, Gabius HJ. Galectin-3: Is this member of a large family of multifunctional lectins (already) a therapeutic target? Expert Opin Ther Targets. 2019;23:819–828. doi: 10.1080/14728222.2019.1675638. PubMed DOI