Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo

. 2021 Feb ; 23 (2) : . [epub] 20201210

Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33300056

Understanding the molecular and cellular processes in skin wound healing can pave the way for devising innovative concepts by turning the identified natural effectors into therapeutic tools. Based on the concept of broad‑scale engagement of members of the family of galactoside‑binding lectins (galectins) in pathophysiological processes, such as cancer or tissue repair/regeneration, the present study investigated the potential of galectins‑1 (Gal‑1) and ‑3 (Gal‑3) in wound healing. Human dermal fibroblasts, which are key cells involved in skin wound healing, responded to galectin exposure (Gal‑1 at 300 or Gal‑3 at 600 ng/ml) with selective changes in gene expression among a panel of 84 wound‑healing‑related genes, as well as remodeling of the extracellular matrix. In the case of Gal‑3, positive expression of Ki67 and cell number increased when using a decellularized matrix produced by Gal‑3‑treated fibroblasts as substrate for culture of interfollicular keratinocytes. In vivo wounds were topically treated with 20 ng/ml Gal‑1 or ‑3, and collagen score was found to be elevated in excisional wound repair in rats treated with Gal‑3. The tensile strength measured in incisions was significantly increased from 79.5±17.5 g/mm2 in controls to 103.1±21.4 g/mm2 after 21 days of healing. These data warrant further testing mixtures of galectins and other types of compounds, for example a combination of galectins and TGF‑β1.

Zobrazit více v PubMed

Gaylarde PM, Sarkany I. Cell migration and DNA synthesis in organ culture of human skin. Br J Dermatol. 1975;92:375–380. doi: 10.1111/j.1365-2133.1975.tb03096.x. PubMed DOI

Donaldson DJ, Mason JM. Inhibition of epidermal cell migration by concanavalin A in skin wounds of the adult newt. J Exp Zool. 1977;200:55–64. doi: 10.1002/jez.1402000108. PubMed DOI

Harrison FL, Chesterton CJ. Factors mediating cell-cell recognition and adhesion. Galaptins, a recently discovered class of bridging molecules. FEBS Lett. 1980;122:157–165. doi: 10.1016/0014-5793(80)80428-5. PubMed DOI

Barondes SH. Galectins: A personal overview. Trends Glycosci Glycotechnol. 1997;9:1–7. doi: 10.4052/tigg.9.1. DOI

Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta. 1999;1473:172–185. doi: 10.1016/S0304-4165(99)00177-4. PubMed DOI

Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002;1572:263–273. doi: 10.1016/S0304-4165(02)00313-6. PubMed DOI

Thiemann S, Baum LG. Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol. 2016;34:243–264. doi: 10.1146/annurev-immunol-041015-055402. PubMed DOI

Kaltner H, Toegel S, Caballero GG, Manning JC, Ledeen RW, Gabius HJ. Galectins: Their network and roles in immunity/tumor growth control. Histochem Cell Biol. 2017;147:239–256. doi: 10.1007/s00418-016-1522-8. PubMed DOI

Sato S. Cytosolic galectins and their release and roles as carbohydrate-binding proteins in host-pathogen interaction. Trends Glycosci Glycotechnol. 2018;30:SE199–SE209. doi: 10.4052/tigg.1739.1SE. DOI

de Jong CGHM, Gabius HJ, Baron W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci. 2020;77:1289–1317. doi: 10.1007/s00018-019-03327-7. PubMed DOI PMC

García Caballero G, Kaltner H, Kutzner TJ, Ludwig AK, Manning JC, Schmidt S, Sinowatz F, Gabius HJ. How galectins have become multifunctional proteins. Histol Histopathol. 2020;35:509–539. PubMed

Kutzner TJ, Higuero AM, Süssmair M, Kopitz J, Hingar M, Díez-Revuelta N, Caballero GG, Kaltner H, Lindner I, Abad-Rodríguez J, et al. How presence of a signal peptide affects human galectins-1 and −4: Clues to explain common absence of a leader sequence among adhesion/growth-regulatory galectins. Biochim Biophys Acta Gen Subj. 2020;1864:129449. doi: 10.1016/j.bbagen.2019.129449. PubMed DOI

Flotte TJ, Springer TA, Thorbecke GJ. Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets. Am J Pathol. 1983;111:112–124. PubMed PMC

Roff CF, Rosevear PR, Wang JL, Barker R. Identification of carbohydrate-binding proteins from mouse and human fibroblasts. Biochem J. 1983;211:625–629. doi: 10.1042/bj2110625. PubMed DOI PMC

Cowles EA, Moutsatsos IK, Wang JL, Anderson RL. Expression of carbohydrate binding protein 35 in human fibroblasts: Comparisons between cells with different proliferative capacities. Exp Gerontol. 1989;24:577–585. doi: 10.1016/0531-5565(89)90061-2. PubMed DOI

Wollenberg A, de la Salle H, Hanau D, Liu FT, Bieber T. Human keratinocytes release the endogenous beta-galactoside-binding soluble lectin immunoglobulin E (IgE-binding protein) which binds to Langerhans cells where it modulates their binding capacity for IgE glycoforms. J Exp Med. 1993;178:777–785. doi: 10.1084/jem.178.3.777. PubMed DOI PMC

Konstantinov KN, Shames B, Izuno G, Liu FT. Expression of epsilon BP, a beta-galactoside-binding soluble lectin, in normal and neoplastic epidermis. Exp Dermatol. 1994;3:9–16. doi: 10.1111/j.1600-0625.1994.tb00260.x. PubMed DOI

Holiková Z, Smetana K, Jr, Bartunková J, Dvoránková B, Kaltner H, Gabius HJ. Human epidermal langerhans cells are selectively recognized by galectin-3 but not by galectin-1. Folia Biol (Praha) 2000;46:195–198. PubMed

Larsen L, Chen HY, Saegusa J, Liu FT. Galectin-3 and the skin. J Dermatol Sci. 2011;64:85–91. doi: 10.1016/j.jdermsci.2011.07.008. PubMed DOI PMC

Pepe D, Elliott CG, Forbes TL, Hamilton DW. Detection of galectin-3 and localization of advanced glycation end products (AGE) in human chronic skin wounds. Histol Histopathol. 2014;29:251–258. PubMed

Walker JT, Elliott CG, Forbes TL, Hamilton DW. Genetic deletion of galectin-3 does not impair full-thickness excisional skin healing. J Invest Dermatol. 2016;136:1042–1050. doi: 10.1016/j.jid.2016.01.014. PubMed DOI

McLeod K, Walker JT, Hamilton DW. Galectin-3 regulation of wound healing and fibrotic processes: Insights for chronic skin wound therapeutics. J Cell Commun Signal. 2018;12:281–287. doi: 10.1007/s12079-018-0453-7. PubMed DOI PMC

Wu NL, Liu FT. The expression and function of galectins in skin physiology and pathology. Exp Dermatol. 2018;27:217–226. doi: 10.1111/exd.13512. PubMed DOI

Filer A, Bik M, Parsonage GN, Fitton J, Trebilcock E, Howlett K, Cook M, Raza K, Simmons DL, Thomas AM, et al. Galectin-3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 2009;60:1604–1614. doi: 10.1002/art.24574. PubMed DOI PMC

Weinmann D, Schlangen K, André S, Schmidt S, Walzer SM, Kubista B, Windhager R, Toegel S, Gabius HJ. Galectin-3 induces a pro-degradative/inflammatory gene signature in human chondrocytes, teaming up with galectin-1 in osteoarthritis pathogenesis. Sci Rep. 2016;6:39112. doi: 10.1038/srep39112. PubMed DOI PMC

Weinmann D, Kenn M, Schmidt S, Schmidt K, Walzer SM, Kubista B, Windhager R, Schreiner W, Toegel S, Gabius HJ. Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and −3. Cell Mol Life Sci. 2018;75:4187–4205. doi: 10.1007/s00018-018-2856-2. PubMed DOI PMC

Cada Z, Smetana K, Jr, Lacina L, Plzáková Z, Stork J, Kaltner H, Russwurm R, Lensch M, André S, Gabius HJ. Immunohistochemical fingerprinting of the network of seven adhesion/growth-regulatory lectins in human skin and detection of distinct tumor-associated alterations. Folia Biol (Praha) 2009;55:145–152. PubMed

Klíma J, Lacina L, Dvorankova B, Herrmann D, Carnwath JW, Niemann H, Kaltner H, André S, Motlík J, Gabius HJ, Smetana K., Jr Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiol Res. 2009;58:873–884. PubMed

Gál P, Vasilenko T, Kostelniková M, Jakubco J, Kovác I, Sabol F, André S, Kaltner H, Gabius HJ, Smetana K., Jr Open wound healing in vivo: Monitoring binding and presence of adhesion/growth-regulatory galectins in rat skin during the course of complete re-epithelialization. Acta Histochem Cytochem. 2011;44:191–199. doi: 10.1267/ahc.11014. PubMed DOI PMC

Dvoránková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, Kaltner H, André S, Gabius HJ, Sykova E, Smetana K., Jr Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Gabius HJ. Influence of type of linkage and spacer on the interaction of beta-galactoside-binding proteins with immobilized affinity ligands. Anal Biochem. 1990;189:91–94. doi: 10.1016/0003-2697(90)90050-J. PubMed DOI

Sarter K, André S, Kaltner H, Lensch M, Schulze C, Urbonaviciute V, Schett G, Herrmann M, Gabius HJ. Detection and chromatographic removal of lipopolysaccharide in preparations of multifunctional galectins. Biochem Biophys Res Commun. 2009;379:155–159. doi: 10.1016/j.bbrc.2008.12.024. PubMed DOI

Kopitz J, Vértesy S, André S, Fiedler S, Schnölzer M, Gabius HJ. Human chimera-type galectin-3: Defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation. Biochimie. 2014;104:90–99. doi: 10.1016/j.biochi.2014.05.010. PubMed DOI

García Caballero G, Kaltner H, Michalak M, Shilova N, Yegres M, André S, Ludwig AK, Manning JC, Schmidt S, Schnölzer M, et al. Chicken GRIFIN: A homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie. 2016;128-129:34–47. doi: 10.1016/j.biochi.2016.06.001. PubMed DOI

Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell. 1975;6:331–343. doi: 10.1016/S0092-8674(75)80001-8. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Perzelova V, Sabol F, Vasilenko T, Novotný M, Kováč I, Slezák M, Ďurkáč J, Hollý M, Pilátová M, Szabo P, et al. Pharmacological activation of estrogen receptors-α and -β differentially modulates keratinocyte differentiation with functional impact on wound healing. Int J Mol Med. 2016;37:21–28. doi: 10.3892/ijmm.2015.2351. PubMed DOI PMC

Kovac I, Melegova N, Coma M, Takáč P, Kováčová K, Hollý M, Ďurkáč J, Urban L, Gurbáľová M, Švajdlenka E, et al. Aesculus hippocastanum L. extract does not induce fibroblast to myofibroblast conversion but increases extracellular matrix production in vitro leading to increased wound tensile strength in rats. Molecules. 2020;25:1917. doi: 10.3390/molecules25081917. PubMed DOI PMC

Kovac I, Durkac J, Holly M, Jakubčová K, Peržeľová V, Mučaji P, Švajdlenka E, Sabol F, Legáth J, Belák J, et al. Plantago lanceolata L. water extract induces transition of fibroblasts into myofibroblasts and increases tensile strength of healing skin wounds. J Pharm Pharmacol. 2015;67:117–125. doi: 10.1111/jphp.12316. PubMed DOI

Sabol F, Vasilenko T, Novotny M, Tomori Z, Bobrov N, Zivčák J, Hudák R, Gál P. Intradermal running suture versus 3M™ Vetbond™ tissue adhesive for wound closure in rodents: A biomechanical and histological study. Eur Surg Res. 2010;45:321–326. doi: 10.1159/000320837. PubMed DOI

Gál P, Toporcer T, Vidinsky B, Hudak R, Zivcak J, Sabo J. Simple interrupted percutaneous suture versus intradermal running suture for wound tensile strength measurement in rats: A technical note. Eur Surg Res. 2009;43:61–65. doi: 10.1159/000219214. PubMed DOI

Koshizuka S, Kanazawa K, Kobayashi N, Takazawa I, Waki Y, Shibusawa H, Shumiya S. The beneficial effects of recombinant human insulin-like growth factor-I (IGF-I) on wound healing in severely wounded senescent mice. Surg Today. 1997;27:946–952. doi: 10.1007/BF02388144. PubMed DOI

Cho CH, Sung HK, Kim KT, Cheon HG, Oh GT, Hong HJ, Yoo OJ, Koh GY. COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci USA. 2006;103:4946–4951. doi: 10.1073/pnas.0506352103. PubMed DOI PMC

Quirinia A, Viidik A. The effect of recombinant basic fibroblast growth factor (bFGF) in fibrin adhesive vehicle on the healing of ischaemic and normal incisional skin wounds. Scand J Plast Reconstr Surg Hand Surg. 1998;32:9–18. doi: 10.1080/02844319850158903. PubMed DOI

Toegel S, Weinmann D, André S, Walzer SM, Bilban M, Schmidt S, Chiari C, Windhager R, Krall C, Bennani-Baiti IM, Gabius HJ. Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J Immunol. 2016;196:1910–1921. doi: 10.4049/jimmunol.1501165. PubMed DOI

Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG, Raz A. Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and −9. Biochemistry. 1994;33:14109–14114. doi: 10.1021/bi00251a020. PubMed DOI

Sundqvist M, Welin A, Elmwall J, Osla V, Nilsson UJ, Leffler H, Bylund J, Karlsson A. Galectin-3 type-C self-association on neutrophil surfaces: The carbohydrate recognition domain regulates cell function. J Leukoc Biol. 2018;103:341–353. doi: 10.1002/JLB.3A0317-110R. PubMed DOI

Advedissian T, Proux-Gillardeaux V, Nkosi R, Peyret G, Nguyen T, Poirier F, Viguier M, Deshayes F. E-cadherin dynamics is regulated by galectin-7 at epithelial cell surface. Sci Rep. 2017;7:17086. doi: 10.1038/s41598-017-17332-y. PubMed DOI PMC

Kyriakides TR, Wulsin D, Skokos EA, Fleckman P, Pirrone A, Shipley JM, Senior RM, Bornstein P. Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis. Matrix Biol. 2009;28:65–73. doi: 10.1016/j.matbio.2009.01.001. PubMed DOI PMC

Kim MH, Wu WH, Choi JH, Kim J, Jun JH, Ko Y, Lee JH. Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts. Wound Repair Regen. 2018;26((Suppl 1)):S9–S18. doi: 10.1111/wrr.12579. PubMed DOI

Liu W, Hsu DK, Chen HY, Yang RY, Carraway KL, III, Isseroff RR, Liu FT. Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. J Invest Dermatol. 2012;132:2828–2837. doi: 10.1038/jid.2012.211. PubMed DOI PMC

Kershenobich Stalnikowitz D, Weissbrod AB. Liver fibrosis and inflammation. A review. Ann Hepatol. 2003;2:159–163. doi: 10.1016/S1665-2681(19)32127-1. PubMed DOI

Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009;19:500–510. doi: 10.1111/j.1600-0838.2009.00986.x. PubMed DOI

Kjaer M, Magnusson P, Krogsgaard M, Boysen Møller J, Olesen J, Heinemeier K, Hansen M, Haraldsson B, Koskinen S, Esmarck B, Langberg H. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat. 2006;208:445–450. doi: 10.1111/j.1469-7580.2006.00549.x. PubMed DOI PMC

Pena E, de la Torre R, Arderiu G, Slevin M, Badimon L. mCRP triggers angiogenesis by inducing F3 transcription and TF signalling in microvascular endothelial cells. Thromb Haemost. 2017;117:357–370. doi: 10.1160/TH16-07-0524. PubMed DOI

Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius HJ. Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem. 2001;276:35917–35923. doi: 10.1074/jbc.M105135200. PubMed DOI

Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius HJ. Network analysis of adhesion/growth-regulatory galectins and their binding sites in adult chicken retina and choroid. J Anat. 2017;231:23–37. doi: 10.1111/joa.12612. PubMed DOI PMC

García Caballero G, Schmidt S, Schnölzer M, Schlötzer-Schrehardt U, Knospe C, Ludwig AK, Manning JC, Muschler P, Kaltner H, Kopitz J, Gabius HJ. Chicken GRIFIN: Binding partners, developmental course of localization and activation of its lens-specific gene expression by L-Maf/Pax6. Cell Tissue Res. 2019;375:665–683. doi: 10.1007/s00441-018-2931-x. PubMed DOI

García Caballero G, Schmidt S, Manning JC, Michalak M, Schlötzer-Schrehardt U, Ludwig AK, Kaltner H, Sinowatz F, Schnölzer M, Kopitz J, Gabius HJ. Chicken lens development: Complete signature of expression of galectins during embryogenesis and evidence for their complex formation with α-, β-, δ- and τ-crystallins, N-CAM, and N-cadherin obtained by affinity chromatography. Cell Tissue Res. 2020;379:13–35. doi: 10.1007/s00441-019-03129-0. PubMed DOI

Gabius HJ. How to crack the sugar code. Folia Biol (Praha) 2017;63:121–131. PubMed

Kopitz J, Xiao Q, Ludwig AK, Romero A, Michalak M, Sherman SE, Zhou X, Dazen C, Vértesy S, Kaltner H, et al. Reaction of a programmable glycan presentation of glycodendrimersomes and cells with engineered human lectins to show the sugar functionality of the cell surface. Angew Chem Int Ed Engl. 2017;56:14677–14681. doi: 10.1002/anie.201708237. PubMed DOI

Ludwig AK, Michalak M, Xiao Q, Gilles U, Medrano FJ, Ma H, FitzGerald FG, Hasley WD, Melendez-Davila A, Liu M, et al. Design-functionality relationships for adhesion/growth-regulatory galectins. Proc Natl Acad Sci USA. 2019;116:2837–2842. doi: 10.1073/pnas.1813515116. PubMed DOI PMC

Ludwig AK, Kaltner H, Kopitz J, Gabius HJ. Lectinology 4.0: Altering modular (ga)lectin display for functional analysis and biomedical applications. Biochim Biophys Acta Gen Subj. 2019;1863:935–940. doi: 10.1016/j.bbagen.2019.03.005. PubMed DOI

Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365:495–506. doi: 10.1007/s00441-016-2464-0. PubMed DOI PMC

Haensel D, Dai X. Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading. Dev Dyn. 2018;247:473–480. doi: 10.1002/dvdy.24561. PubMed DOI PMC

Smetana K, Jr, André S, Kaltner H, Kopitz J, Gabius HJ. Context-dependent multifunctionality of galectin-1: A challenge for defining the lectin as therapeutic target. Expert Opin Ther Targets. 2013;17:379–392. doi: 10.1517/14728222.2013.750651. PubMed DOI

Romero A, Gabius HJ. Galectin-3: Is this member of a large family of multifunctional lectins (already) a therapeutic target? Expert Opin Ther Targets. 2019;23:819–828. doi: 10.1080/14728222.2019.1675638. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace