• This record comes from PubMed

Assessment of Agrimonia eupatoria L. and Lipophosphonoxin (DR-6180) Combination for Wound Repair: Bridging the Gap Between Phytomedicine and Organic Chemistry

. 2024 Dec 12 ; 14 (12) : . [epub] 20241212

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
VEGA-1/0455/22, VEGA-1/0226/22 and VEGA-1/0262/24 Ministry of Education, Science, Research and Sport of the Slovak Republic
APVV-20-0017 and APVV-22-0006 Slovak Research and Development Agency
NW24-08-00073 Agentura Pro Zdravotnický Výzkum České Republiky
22-08857S Czech Science Foundation
LX22NPO5103 European Union
09I03-03-V04-00075 European Union

Agrimonia eupatoria L. (AE) has a rich tradition of use in wound healing improvement across various cultures worldwide. In previous studies, we revealed that Agrimonia eupatoria L. water extract (AE) possesses a rich polyphenolic composition, displaying remarkable antioxidant properties. Our investigations also demonstrated that lipophosphonoxin (LPPO) exhibited antibacterial efficacy in vitro while preserving the proliferation and differentiation of fibroblasts and keratinocytes. Building upon our prior findings, in this study, we intended to examine whether a combination of AE and LPPO could enhance skin wound healing while retaining antibacterial attributes. The antibacterial activity of AE/LPPO against Staphylococcus aureus was evaluated, alongside its effects on fibroblast-to-myofibroblast transition, the formation of extracellular matrix (ECM), and endothelial cells and keratinocyte proliferation/phenotype. We also investigated AE/LPPO's impact on TGF-β1 and VEGF-A signaling in keratinocytes/fibroblasts and endothelial cells, respectively. Additionally, wound healing progression in rats was examined through macroscopic observation and histological analysis. Our results indicate that AE/LPPO promotes myofibroblast-like phenotypic changes and augments ECM deposition. Clinically relevant, the AE/LPPO did not disrupt TGF-β1 and VEGF-A signaling and accelerated wound closure in rats. Notably, while AE and LPPO individually exhibited antibacterial activity, their combination did not lead to synergism, rather decreasing antibacterial activity, warranting further examination. These findings underscore substantial wound healing improvement facilitated by AE/LPPO, requiring further exploration in animal models closer to human physiology.

See more in PubMed

Sen C.K., Gordillo G.M., Roy S., Kirsner R., Lambert L., Hunt T.K., Gottrup F., Gurtner G.C., Longaker M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763–771. doi: 10.1111/j.1524-475X.2009.00543.x. PubMed DOI PMC

Michalak M. Plant extracts as skin care and therapeutic agents. Int. J. Mol. Sci. 2023;24:15444. doi: 10.3390/ijms242015444. PubMed DOI PMC

Moses R.L., Prescott T.A.K., Mas-Claret E., Steadman R., Moseley R., Sloan A.J. Evidence for natural products as alternative wound-healing therapies. Biomolecules. 2023;13:444. doi: 10.3390/biom13030444. PubMed DOI PMC

Benvenuto M., Focaccetti C., Ciuffa S., Fazi S., Bei A., Miele M.T., Albonici L., Cifaldi L., Masuelli L., Bei R. Polyphenols affect the humoral response in cancer, infectious and allergic diseases and autoimmunity by modulating the activity of th1 and th2 cells. Curr. Opin. Pharmacol. 2021;60:315–330. doi: 10.1016/j.coph.2021.08.005. PubMed DOI

Melguizo-Rodriguez L., De Luna-Bertos E., Ramos-Torrecillas J., Illescas-Montesa R., Costela-Ruiz V.J., Garcia-Martinez O. Potential effects of phenolic compounds that can be found in olive oil on wound healing. Foods. 2021;10:1642. doi: 10.3390/foods10071642. PubMed DOI PMC

Kuczmannova A., Gal P., Varinska L., Treml J., Kovac I., Novotny M., Vasilenko T., Dall’Acqua S., Nagy M., Mucaji P. Agrimonia eupatoria L. and Cynara cardunculus L. Water infusions: Phenolic profile and comparison of antioxidant activities. Molecules. 2015;20:20538–20550. doi: 10.3390/molecules201119715. PubMed DOI PMC

Correia H., Gonzalez-Paramas A., Amaral M.T., Santos-Buelga C., Batista M.T. Polyphenolic profile characterization of Agrimonia eupatoria L. By hplc with different detection devices. Biomed. Chromatogr. 2006;20:88–94. doi: 10.1002/bmc.533. PubMed DOI

Cao G.H., Sofic E., Prior R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997;22:749–760. doi: 10.1016/S0891-5849(96)00351-6. PubMed DOI

Kuczmannova A., Balazova A., Racanska E., Kamenikova M., Fialova S., Majernik J., Nagy M., Gal P., Mucaji P. Agrimonia eupatoria L. and Cynara cardunculus L. Water infusions: Comparison of anti-diabetic activities. Molecules. 2016;21:564. doi: 10.3390/molecules21050564. PubMed DOI PMC

Gray A.M., Flatt P.R. Actions of the traditional anti-diabetic plant, Agrimony eupatoria (agrimony): Effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. Br. J. Nutr. 1998;80:109–114. doi: 10.1017/S0007114598001834. PubMed DOI

Yoon S.J., Koh E.J., Kim C.S., Zee O.P., Kwak J.H., Jeong W.J., Kim J.H., Lee S.M. Agrimonia eupatoria protects against chronic ethanol-induced liver injury in rats. Food Chem. Toxicol. 2012;50:2335–2341. doi: 10.1016/j.fct.2012.04.005. PubMed DOI

Lee K.Y., Hwang L., Jeong E.J., Kim S.H., Kim Y.C., Sung S.H. Effect of neuroprotective flavonoids of Agrimonia eupatoria on glutamate-induced oxidative injury to ht22 hippocampal cells. Biosci. Biotechnol. Biochem. 2010;74:1704–1706. doi: 10.1271/bbb.100200. PubMed DOI

Vasilenko T., Kovac I., Slezak M., Durkac J., Perzel’ova V., Coma M., Kanuchova M., Urban L., Szabo P., Dvorankova B., et al. Agrimonia eupatoria L. Aqueous extract improves skin wound healing: An in vitro study in fibroblasts and keratinocytes and in vivo study in rats. In Vivo. 2022;36:1236–1244. doi: 10.21873/invivo.12822. PubMed DOI PMC

Rejman D., Rabatinova A., Pombinho A.R., Kovackova S., Pohl R., Zbornikova E., Kolar M., Bogdanova K., Nyc O., Sanderova H., et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem. 2011;54:7884–7898. doi: 10.1021/jm2009343. PubMed DOI

Panova N., Zbornikova E., Simak O., Pohl R., Kolar M., Bogdanova K., Vecerova R., Seydlova G., Fiser R., Hadravova R., et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS ONE. 2015;10:e0145918. doi: 10.1371/journal.pone.0145918. PubMed DOI PMC

Seydlova G., Pohl R., Zbornikova E., Ehn M., Simak O., Panova N., Kolar M., Bogdanova K., Vecerova R., Fiser R., et al. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI

Zbornikova E., Gallo J., Vecerova R., Bogdanova K., Kolar M., Vitovska D., Pham D.D.D., Paces O., Mojr V., Sanderova H., et al. Evaluation of second-generation lipophosphonoxins as antimicrobial additives in bone cement. ACS Omega. 2020;5:3165–3171. doi: 10.1021/acsomega.9b03072. PubMed DOI PMC

Do Pham D.D., Jencova V., Kanuchova M., Bayram J., Grossova I., Suca H., Urban L., Havlickova K., Novotny V., Mikes P., et al. Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Sci. Rep. 2021;11:17688. doi: 10.1038/s41598-021-96980-7. PubMed DOI PMC

Brenmoehl J., Miller S.N., Hofmann C., Vogl D., Falk W., Schölmerich J., Rogler G. Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J. Gastroenterol. 2009;15:1431–1442. doi: 10.3748/wjg.15.1431. PubMed DOI PMC

Leopold B., Strutz J., Weiss E., Gindlhuber J., Birner-Gruenberger R., Hackl H., Appel H.M., Cvitic S., Hiden U. Outgrowth, proliferation, viability, angiogenesis and phenotype of primary human endothelial cells in different purchasable endothelial culture media: Feed wisely. Histochem. Cell Biol. 2019;152:377–390. doi: 10.1007/s00418-019-01815-2. PubMed DOI PMC

Boukamp P., Petrussevska R.T., Breitkreutz D., Hornung J., Markham A., Fusenig N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC

Dvorankova B., Lacina L., Smetana K., Jr. Isolation of normal fibroblasts and their cancer-associated counterparts (cafs) for biomedical research. Methods Mol. Biol. 2019;1879:393–406. PubMed

Rotter B.A., Thompson B.K., Clarkin S., Owen T.C. Rapid colorimetric bioassay for screening of fusarium mycotoxins. Nat. Toxins. 1993;1:303–307. doi: 10.1002/nt.2620010509. PubMed DOI

Kováč I., Melegová N., Čoma M., Takáč P., Kováčová K., Hollý M., Ďurkáč J., Urban L., Gurbáľová M., Švajdlenka E., et al. Aesculus hippocastanum L. Extract does not induce fibroblast to myofibroblast conversion but increases extracellular matrix production in vitro leading to increased wound tensile strength in rats. Molecules. 2020;25:1917. doi: 10.3390/molecules25081917. PubMed DOI PMC

Gál P., Vasilenko T., Kováč I., Čoma M., Jakubčo J., Jakubčová M., Peržeľová V., Urban L., Kolář M., Sabol F., et al. Human galectin-3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo. Mol. Med. Rep. 2021;23:99. doi: 10.3892/mmr.2020.11738. PubMed DOI PMC

European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID) Eucast definitive document e.Def 1.2, may 2000: Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000;6:503–508. doi: 10.1046/j.1469-0691.2000.00149.x. PubMed DOI

Isenberg H.D., editor. Clinical Microbiology Procedures Handbook. 2nd ed. ASM Press; Washington, DC, USA: 2004. pp. 1–28.

Gal P., Kilik R., Mokry M., Vidinsky B., Vasilenko T., Mozes S., Bobrov N., Tomori Z., Bober J., Lenhardt L. Simple method of open skin wound healing model in corticosteroid-treated and diabetic rats: Standardization of semi-quantitative and quantitative histological assessments. Vet. Med. 2008;53:652–659. doi: 10.17221/1973-VETMED. DOI

Martinez-Ferrer M., Afshar-Sherif A.R., Uwamariya C., de Crombrugghe B., Davidson J.M., Bhowmick N.A. Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am. J. Pathol. 2010;176:98–107. doi: 10.2353/ajpath.2010.090283. PubMed DOI PMC

Ghaima K.K. Antibacterial and wound healing activity of some agrimonia eupatoria extracts. Baghdad Sci. J. 2013;10:152–160. doi: 10.21123/bsj.2013.10.1.152-160. DOI

Nam Y.R., Kim H.J., Kim Y.M., Chin Y.W., Bae H.S., Kim W.K., Nam J.H. Agrimonia pilosa leaf extract accelerates skin barrier restoration by activation of transient receptor potential vanilloid 3. J. Dermatol. Sci. 2017;86:255–258. doi: 10.1016/j.jdermsci.2017.03.003. PubMed DOI

Cheng X., Jin J., Hu L., Shen D., Dong X.P., Samie M.A., Knoff J., Eisinger B., Liu M.L., Huang S.M., et al. Trp channel regulates egfr signaling in hair morphogenesis and skin barrier formation. Cell. 2010;141:331–343. doi: 10.1016/j.cell.2010.03.013. PubMed DOI PMC

Imura K., Yoshioka T., Hikita I., Tsukahara K., Hirasawa T., Higashino K., Gahara Y., Arimura A., Sakata T. Influence of trpv3 mutation on hair growth cycle in mice. Biochem. Biophys. Res. Commun. 2007;363:479–483. doi: 10.1016/j.bbrc.2007.08.170. PubMed DOI

Blaydon D.C., Kelsell D.P. Defective channels lead to an impaired skin barrier. J. Cell Sci. 2014;127:4343–4350. doi: 10.1242/jcs.154633. PubMed DOI PMC

Balážová Ľ., Wolaschka T., Rohaľová S., Daneu N., Stahorský M., Salayová A., Tkáčiková Ľ., Eftimová J. In situ gel with silver nanoparticles prepared using Agrimonia eupatoria L. Shows antibacterial activity. Life. 2023;13:573. doi: 10.3390/life13020573. PubMed DOI PMC

Mouro C., Dunne C.P., Gouveia I.C. Designing new antibacterial wound dressings: Development of a dual layer cotton material coated with poly(vinyl alcohol)_chitosan nanofibers incorporating Agrimonia eupatoria L. Extract. Molecules. 2020;26:83. doi: 10.3390/molecules26010083. PubMed DOI PMC

Hou Q., He W.J., Hao H.J., Han Q.W., Chen L., Dong L., Liu J.J., Li X., Zhang Y.J., Ma Y.Z., et al. The four-herb chinese medicine anbp enhances wound healing and inhibits scar formation via bidirectional regulation of transformation growth factor pathway. PLoS ONE. 2014;9:e112274. doi: 10.1371/journal.pone.0112274. PubMed DOI PMC

Urban L., Čoma M., Lacina L., Szabo P., Sabová J., Urban T., Šuca H., Lukačín Š., Zajíček R., Smetana K., Jr., et al. Heterogeneous response to tgf-β1/3 isoforms in fibroblasts of different origins: Implications for wound healing and tumorigenesis. Histochem. Cell Biol. 2023;160:541–554. doi: 10.1007/s00418-023-02221-5. PubMed DOI PMC

Lichtman M.K., Otero-Vinas M., Falanga V. Transforming growth factor beta (tgf-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24:215–222. doi: 10.1111/wrr.12398. PubMed DOI

Hatta M., Miyake Y., Uchida K., Yamazaki J. Keratin 13 gene is epigenetically suppressed during transforming growth factor-β1-induced epithelial-mesenchymal transition in a human keratinocyte cell line. Biochem. Biophys. Res. Commun. 2018;496:381–386. doi: 10.1016/j.bbrc.2018.01.047. PubMed DOI

Garlick J.A., Taichman L.B. Effect of tgf-beta 1 on re-epithelialization of human keratinocytes in vitro: An organotypic model. J. Investig. Dermatol. 1994;103:554–559. doi: 10.1111/1523-1747.ep12396847. PubMed DOI

Rodrigues M., Kosaric N., Bonham C.A., Gurtner G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019;99:665–706. doi: 10.1152/physrev.00067.2017. PubMed DOI PMC

Vaou N., Stavropoulou E., Voidarou C., Tsigalou C., Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms. 2021;9:2041. doi: 10.3390/microorganisms9102041. PubMed DOI PMC

Vaou N., Stavropoulou E., Voidarou C.C., Tsakris Z., Rozos G., Tsigalou C., Bezirtzoglou E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics. 2022;11:1014. doi: 10.3390/antibiotics11081014. PubMed DOI PMC

Figueredo F.G., Ferreira E.O., Lucena B.F., Torres C.M., Lucetti D.L., Lucetti E.C., Silva J.M., Santos F.A., Medeiros C.R., Oliveira G.M., et al. Modulation of the antibiotic activity by extracts from Amburana cearensis A. C. Smith and Anadenanthera macrocarpa (Benth.) brenan. BioMed Res. Int. 2013;2013:640682. doi: 10.1155/2013/640682. PubMed DOI PMC

Hu Z.Q., Zhao W.H., Yoda Y., Asano N., Hara Y., Shimamura T. Additive, indifferent and antagonistic effects in combinations of epigallocatechin gallate with 12 non-beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2002;50:1051–1054. doi: 10.1093/jac/dkf250. PubMed DOI

Abd Latip N., Abd Mutalib N. Synergistic interactions between Christia vespertilionis leaves extract and chemotherapy drug cyclophosphamide on wrl-68 cell line. Asian J. Pharm. Res. Dev. 2019;7:109–113. doi: 10.22270/ajprd.v7i3.488. DOI

Zeitlinger M.A., Derendorf H., Mouton J.W., Cars O., Craig W.A., Andes D., Theuretzbacher U. Protein binding: Do we ever learn? Antimicrob. Agents Chemother. 2011;55:3067–3074. doi: 10.1128/AAC.01433-10. PubMed DOI PMC

Do Pham D.D., Mojr V., Helusova M., Mikusova G., Pohl R., Davidova E., Sanderova H., Vitovska D., Bogdanova K., Vecerova R., et al. Lego-lipophosphonoxins: A novel approach in designing membrane targeting antimicrobials. J. Med. Chem. 2022;65:10045–10078. doi: 10.1021/acs.jmedchem.2c00684. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...