Agrimonia eupatoria L. and Cynara cardunculus L. Water Infusions: Phenolic Profile and Comparison of Antioxidant Activities

. 2015 Nov 18 ; 20 (11) : 20538-50. [epub] 20151118

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26593896

Reactive oxygen species (ROS) are highly considered in the ethiopathogenesis of different pathological conditions because they may cause significant damage to cells and tissues. In this paper, we focused on potential antioxidant properties of two medical plants such as the Agrimonia eupatoria L. and Cynara cardunculus L. Both plants have previously been studied for their pharmacological activities, especially as hepatoprotective and hypoglycemic activities. It has been suggested, that their effects are related to the antioxidant properties of polyphenols, which are dominant compounds of the plants' extracts. In the present study HPLC-MS analysis of water infusion was performed allowing the identification of several phenolic constituents. Furthermore, antioxidant effects of the two extracts were compared showing higher effects for agrimony extract compared to artichoke. Thus, agrimony was selected for the in vivo study using the skin flap viability model. In conclusion, our results provide evidence that the A. eupatoria extract may be a valuable source of polyphenols to be studied for the future development of supplements useful in the prevention of diseases linked to oxidative stress.

Zobrazit více v PubMed

Giada M.L.R. Food phenolic compounds: Main classes, sources and their antioxidant power. In: Morales-González J.A., editor. Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants. InTech Publishing; Rijeka, Croatia: 2013. pp. 87–112.

Correia H., Gonzáles-Paramás A., Amaral M.T., Santos-Buelga C., Batista M.T. Polyphenolic profile characterization of Agrimonia eupatoria L. by HPLC with different detection devices. Biomed. Chromatogr. 2006;20:88–94. doi: 10.1002/bmc.533. PubMed DOI

Cao G., Sofic E., Prior R.L. Antioxidant and proxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997;22:749–760. doi: 10.1016/S0891-5849(96)00351-6. PubMed DOI

Lazo-de-la-Vega-Monroy M.L., Fernández-Mejía C. Oxidative Stress in diabetes mellitus and the role of vitamins with antioxidant action. In: Morales-González J.A., editor. Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants. InTech Publishing; Rijeka, Croatia: 2013. pp. 209–239.

Atoui A.K., Mansouri A., Boskou G., Kefalas P. Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chem. 2005;89:27–36. doi: 10.1016/j.foodchem.2004.01.075. DOI

Omar E.A., Kam A., Alqahtani A., Li K.M., Razmovski-Naumovski V., Nammi S., Chan K., Roufogalis B.D., Li G.Q. Herbal medicines and nutracueticals for diabetic vascular complications: Mechanism of action and bioactive phytochemicals. Curr. Pharm. Des. 2010;16:3776–3807. doi: 10.2174/138161210794455076. PubMed DOI

Hamik A., Atkins G.B., Jain M.K. Molecular mechanism of diabetic vasculopathy. Drug Discov. Today Dis. Mech. 2005;2:11–17. doi: 10.1016/j.ddmec.2005.05.030. DOI

Yetik-Anacak G., Catravas J.D. Nitric oxide and the endothelium: History and impact on cardiovascular disease. Vasc. Pharmacol. 2006;45:268–276. doi: 10.1016/j.vph.2006.08.002. PubMed DOI

Taylor-Fishwick D.A. NOX, NOX who is there? The contribution of NADPH oxidase one to beta cell dysfunction. Front. Endocrinol. 2013;4:1–8. doi: 10.3389/fendo.2013.00040. PubMed DOI PMC

Andriantsitohaina R. Regulation of vascular tone by plant polyphenols: Role of nitric oxide. Gen. Physiol. Biophys. 1999;18:3–5. PubMed

Correia H., Batista M.T., Dinis T.C.P. The activity of an extract and fraction of Agrimonia eupatoria L. against reactive species. BioFactors. 2007;29:91–104. doi: 10.1002/biof.552029209. PubMed DOI

Kubínová R., Jankovská D., Bauerová V. Antioxidant and α-glucosidase inhibition activities and polyphenol content of five species of Agrimonia genus. Acta Fytotech. Zootech. 2012;2:38–41.

Copland A., Nahar L., TomLinson C.T.M., Hamilton V., Middleton M., Kumarasamy Y., Sarker S.D. Antibacterial and free radical scavenging activity of the seed of Agrimonia eupatoria. Fitoterapia. 2003;74:133–135. doi: 10.1016/S0367-326X(02)00317-9. PubMed DOI

Ivanova D., Gerova D., Chervenkov T., Yankova T. Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J. Ethnopharmacol. 2005;96:145–150. doi: 10.1016/j.jep.2004.08.033. PubMed DOI

Venskutonis P.R., Škėmaitė M., Ragažinskienė O. Radical scavenging capacity of Agrimonia procera and Agrimonia eupatoria. Fitoterapia. 2007;78:166–168. doi: 10.1016/j.fitote.2006.10.002. PubMed DOI

Gião M.S., Gomes S., Mdureira A.R., Faria A., Pestana D., Calhau C., Pintado M.E., Azevedo I., Malcata F.X. Effect of in vitro digestion upon the antioxidant capacity of aqueous extracts of Agrimonia eupatoria, Rubus idaeus, Salvia sp. and Satureja montana. Food Chem. 2012;131:761–767. doi: 10.1016/j.foodchem.2011.09.030. DOI

Gouveia S.C., Castilho P.C. Phenolic composition and antioxidant capacity of cultivated artichoke, Madeira cardoon and artichoke- based dietary supplements. Food Res. Int. 2012;48:712–724. doi: 10.1016/j.foodres.2012.05.029. DOI

Toma C.C., Pribac G.C., Neag T.A., Câmpean R.F., Olah N.K. Correlation between the polyphenol content and antioxidant effect of Cynara scolymus L. mother tincture. Studia Univ. VG SSV. 2013;23:95–100.

Lutz M., Henríquez C., Escobar M. Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. J. Food Comp. Anal. 2011;24:49–54. doi: 10.1016/j.jfca.2010.06.001. DOI

Pereira C., Calhelha R.C., Barros L., Ferreira I.C.F.R. Antioxidant properties, anti-hepatocellular carcinoma activity and hepatoxicity of artichoke, milk thistle and borututu. Ind. Crops Prod. 2013;49:61–65. doi: 10.1016/j.indcrop.2013.04.032. DOI

Gray A., Flatt P.R. Actions of the traditional anti-diabetic plant, Agrimonia eupatoria (agrimony): Effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. Br. J. Nutr. 1998;80:109–114. doi: 10.1017/S0007114598001834. PubMed DOI

Patel D.K., Prasad S.K., Kumar R., Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012;2:320–330. doi: 10.1016/S2221-1691(12)60032-X. PubMed DOI PMC

Yoon S.J., Koh E.J., Kim C.S., Zee O.P., Kwak J.H., Jeong W.J., Kim J.H., Lee S.M. Agrimonia eupatoria protects against chronic ethanol-induces liver injury in rats. Food Chem. Toxicol. 2012;50:2335–2341. doi: 10.1016/j.fct.2012.04.005. PubMed DOI

Lee K.Y., Hwang L., Jeong E.J., Kim S.H., Kim Y.C., Sung S.H. Effect of neuroprotective flavonoids of Agrimonia eupatoria on glutamate-induced oxidative injury to HT22 hippocampal cells. Biosci. Biotechnol. Biochem. 2010;74:1704–1706. doi: 10.1271/bbb.100200. PubMed DOI

Heidarian E., Soofiniya Y. Hypolipidemic and hypoglycemic effects of aerial part of Cynara scolymus in streptozotocin-induced diabetic rats. J. Med. Plants Res. 2011;5:2717–2723.

Nazni P., Vijayakumar T.P., Alagianambi P., Amirthaveni M. Hypoglycemic and hypolipidemic effect of Cynara scolymus among selected type 2 diabetic individuals. Pak. J. Nutr. 2006;5:147–151. doi: 10.3923/pjn.2006.147.151. DOI

Fantini N., Colombo G., Giori A., Riva A., Morazzoni P., Bombardelli E., Carai M.A.M. Evidence of glycemia-lowering effect by Cynara scolymus L. extract in normal and obese rats. Phytother. Res. 2011;25:463–466. doi: 10.1002/ptr.3285. PubMed DOI

Shimoda H., Ninomiya K., Nishida N., Yoshino T., Morikawa T., Matsuda H., Yoshikawa M. Anti-hyperlipimedicsesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cybara scolymus L.): Structure requirement and mode of action. Bioorg. Med. Chem. Lett. 2003;13:223–228. doi: 10.1016/S0960-894X(02)00889-2. PubMed DOI

Bundy R., Walker A.F., Middleton R.W., Wallis C., Simpson H.C.R. Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol on otherwise healthy hypercholesterolemic adults: A randomized, double blind placebo controlled trial. Phytomed. 2008;15:668–675. doi: 10.1016/j.phymed.2008.03.001. PubMed DOI

Michel P., Dobrowolska A., Kicel A., Owczarek A., Bazylko A., Granica S., Piwowarski J.P., Olszewska A. Polyphenolic profile, antioxidant and anti-inflammatory activity of eastern teaberry (Gaultheria procumbens L.) leaf extracts. Molecules. 2014;19:20498–20520. doi: 10.3390/molecules191220498. PubMed DOI PMC

Dai J., Mumper R.J. Plant Phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC

Naczk M., Shahidi F. Extraction and analysis of phenolics in food. J. Chromatogr. A. 2004;1054:95–111. doi: 10.1016/S0021-9673(04)01409-8. PubMed DOI

Pandino G., Lombardo S., Mauromicale G., Williamson G. Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chem. 2011;126:417–422. doi: 10.1016/j.foodchem.2010.11.001. DOI

Granica S., Krupa K., Kłębowska A., Kiss A.K. Development and validation of HPLC-DAD-CAD-MS3 method for qualitative and quantitative standardization of polyphenols in Agrimoniae eupatoriae herba (Ph. Eur) J. Pharm. Biomed. Anal. 2013;86:112–122. doi: 10.1016/j.jpba.2013.08.006. PubMed DOI

Muzykantov V.R. Targeting of superoxide dismutase and catalase to vascular endothelium. J. Control. Release. 2001;71:1–21. doi: 10.1016/S0168-3659(01)00215-2. PubMed DOI

Chávez M.D., Lakshmanan N., Kavdia M. Impact of superoxide dismutase on nitric oxide and peroxynitrite levels in the microcirculation—A computational model; Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Lyon, France. 23–26 August 2007; New York, NY, USA: IEEE; 2007. pp. 1022–1026. PubMed

Venskutonis P.R., Škėmaitė M., Sivik B. Assessment of radical scavenging capacity of Agrimonia extracts isolated by supercritical carbon dioxide. J. Supercrit. Fluids. 2008;45:231–237. doi: 10.1016/j.supflu.2008.01.012. DOI

Topolska D., Valachova K., Nagy M., Soltes L. Determination of antioxidative properties of herbal extracts: Agrimonia herba, Cynare folium, and Ligustri folium. Neuroendocrinol. Lett. 2014;35(Suppl. 2):192–196. PubMed

Góth L., Rass P., Páy A. Catalase enzyme mutations and their association with diseases. Mol. Diagn. 2004;8:141–149. doi: 10.1007/BF03260057. PubMed DOI

TremL J., Šmejkal K., Hošek J., ŽemLička M. Determination of antioxidant activity using oxidative damage to plasmid DNA—Pursuit of solvent optimization. Chem. Pap. 2013;67:484–489. doi: 10.2478/s11696-013-0334-8. DOI

Vasilenko T., Slezák M., Novotný M., Kováč I., Durkáč J., Tomková I., Torma N., Vrzgula A., Lenhardt L., Levkut M., et al. Pre- and/or postsurgical administration of estradiol benzoate increases skin flap viability in female rats. Aesthet. Plast. Surg. 2013;37:1003–1009. doi: 10.1007/s00266-013-0151-z. PubMed DOI

Xu R., Ge J., Lei Y., Lu X. Improvement effect of estrogen on flap reperfusion injury and blood supply. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2009;23:964–968. PubMed

Kane A.J., Barker J.E., Mitchell M.G., Romero R., Messina A., Wagh M., Fraulin F.O., Morrison W.A., Stewart A.G. Inducible nitric oxide synthase (iNOS) activity promotes ischaemic skin flap survival. Br. J. Pharmacol. 2001;132:1631–1638. doi: 10.1038/sj.bjp.0703944. PubMed DOI PMC

Ganji S.H., Qin S., Zhang L., Kamanna V.S., Kashyap M.L. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis. 2009;202:68–75. doi: 10.1016/j.atherosclerosis.2008.04.044. PubMed DOI

Pharmacopoeia Bohemoslovaca. 4th ed. Volume 3. AVICENUM; Prague, Czech Republic: 1987. pp. 43–44.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...