The In Vitro Inhibitory Effect of Selected Asteraceae Plants on Pancreatic Lipase Followed by Phenolic Content Identification through Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-01-00259
Ministry of Health of the Czech Republic
Rector´s Junior Grant for the year 2022
UCT Institutional Plan
LM2018100
METROFOOD-CZ
PubMed
36232503
PubMed Central
PMC9569725
DOI
10.3390/ijms231911204
PII: ijms231911204
Knihovny.cz E-zdroje
- Klíčová slova
- bioprospecting, enzyme assay, in vitro testing, metabolomics, obesity, phytochemicals, polyphenols, suspect screening, ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry,
- MeSH
- Asteraceae * chemie MeSH
- chromatografie kapalinová MeSH
- fenoly analýza MeSH
- flavonoidy chemie MeSH
- fytonutrienty analýza MeSH
- glykosidy MeSH
- hmotnostní spektrometrie MeSH
- lipasa MeSH
- lipidy MeSH
- methylenchlorid MeSH
- obezita MeSH
- rostlinné extrakty chemie farmakologie MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenoly MeSH
- flavonoidy MeSH
- fytonutrienty MeSH
- glykosidy MeSH
- lipasa MeSH
- lipidy MeSH
- methylenchlorid MeSH
- rostlinné extrakty MeSH
Pancreatic lipase (PNLIP, EC 3.1.1.3) plays a pivotal role in the digestion of dietary lipids, a metabolic pathway directly related to obesity. One of the effective strategies in obesity treatment is the inhibition of PNLIP, which is possible to be achieved by specific phenolic compounds occurring in high abundance in some plants. In this study, a multidisciplinary approach is presented investigating the PNLIP inhibitory effect of 33 plants belonging in the Asteraceae botanical family. In the first stage of the study, a rapid and cost-efficient PNLIP assay in a 96-microwell plate format was developed and important parameters were optimized, e.g., the enzyme substrate. Upon PNLIP assay optimization, aqueous and dichloromethane Asteraceae plant extracts were tested and a cut-off inhibition level was set to further analyze only the samples with a significant inhibitory effect (inhibitory rate > 40%), using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) method. Specifically, a metabolomic suspect screening was performed and 69 phenolic compounds were tentatively identified, including phenolic acids, flavonoids, flavonoid-3-O-glycosides, and flavonoid-7-O-glycosides, amongst others. In the case of aqueous extracts, phytochemicals known for inducing PNLIP inhibitory effect, e.g., compounds containing galloyl molecules or caffeoylquinic acids, were monitored in Chrysanthemum morifolium, Grindella camporum and Hieracium pilosella extracts. All in all, the presented approach combines in vitro bioactivity measurements to high-end metabolomics to identify phenolic compounds with potential medicinal and/or dietary applications.
Zobrazit více v PubMed
Liu T.-T., Liu X.-T., Chen Q.-X., Shi Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020;128:110314. doi: 10.1016/j.biopha.2020.110314. PubMed DOI
Endalifer M.L., Diress G. Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. J. Obes. 2020;2020:6134362. doi: 10.1155/2020/6134362. PubMed DOI PMC
Kumar A., Chauhan S. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sci. 2021;271:119115. doi: 10.1016/j.lfs.2021.119115. PubMed DOI
Müller T.D., Blüher M., Tschöp M.H., DiMarchi R.D. Anti-obesity drug discovery: Advances and challenges. Nat. Rev. Drug Discov. 2022;21:201–223. doi: 10.1038/s41573-021-00337-8. PubMed DOI PMC
Coulter A.A., Rebello C.J., Greenway F.L. Centrally acting agents for obesity: Past, present, and future. Drugs. 2018;78:1113–1132. doi: 10.1007/s40265-018-0946-y. PubMed DOI PMC
Mukherjee P.K. In: Chapter 20—Phyto-Pharmaceuticals, Nutraceuticals and Their Evaluation. Mukherjee P.K., editor. Elsevier; Amsterdam, The Netherlands: 2019. pp. 707–722.
Luca S.V., Macovei I., Bujor A., Miron A., Skalicka-Woźniak K., Aprotosoaie A.C., Trifan A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020;60:626–659. doi: 10.1080/10408398.2018.1546669. PubMed DOI
Martinez-Gonzalez A.I., Alvarez-Parrilla E., Díaz-Sánchez Á.G., de la Rosa L.A., Núñez-Gastélum J.A., Vazquez-Flores A.A., Gonzalez-Aguilar G.A. In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, fluorescence spectroscopy and molecular docking study. Food Technol. Biotechnol. 2017;55:519–530. doi: 10.17113/ftb.55.04.17.5138. PubMed DOI PMC
McDougall G.J., Kulkarni N.N., Stewart D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009;115:193–199. doi: 10.1016/j.foodchem.2008.11.093. DOI
Gondoin A., Grussu D., Stewart D., McDougall G.J. White and green tea polyphenols inhibit pancreatic lipase in vitro. Food Res. Int. 2010;43:1537–1544. doi: 10.1016/j.foodres.2010.04.029. DOI
Vitalini S., Garzoli S., Sisto F., Pezzani R., Argentieri M.P., Scarafoni A., Ciappellano S., Zorzan M., Capraro J., Collazuol D. Digestive and gastroprotective effects of Achillea erba-rotta subsp. moschata (Wulfen) I. Richardson (syn. A. moschata Wulfen) (Asteraceae): From traditional uses to preclinical studies. J. Ethnopharmacol. 2022;298:115670. doi: 10.1016/j.jep.2022.115670. PubMed DOI
Spínola V., Castilho P.C. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro) Phytochemistry. 2017;143:29–35. doi: 10.1016/j.phytochem.2017.07.006. PubMed DOI
Rolnik A., Olas B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int. J. Mol. Sci. 2021;22:3009. doi: 10.3390/ijms22063009. PubMed DOI PMC
Koc S., Isgor B.S., Isgor Y.G., Shomali Moghaddam N., Yildirim O. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharm. Biol. 2015;53:746–751. doi: 10.3109/13880209.2014.942788. PubMed DOI
Akbar S. Handbook of 200 Medicinal Plants. Springer; Berlin/Heidelberg, Germany: 2020. Chamaemelum nobile (L.) all. (asteraceae/aompositae) pp. 593–599.
Grauso L., Emrick S., de Falco B., Lanzotti V., Bonanomi G. Common dandelion: A review of its botanical, phytochemical and pharmacological profiles. Phytochem. Rev. 2019;18:1115–1132. doi: 10.1007/s11101-019-09622-2. DOI
Pohanka M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules. 2019;24:616. doi: 10.3390/molecules24030616. PubMed DOI PMC
Lankatillake C., Luo S., Flavel M., Lenon G.B., Gill H., Huynh T., Dias D.A. Screening natural product extracts for potential enzyme inhibitors: Protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. Plant Methods. 2021;17:3. doi: 10.1186/s13007-020-00702-5. PubMed DOI PMC
Ng M., Fleming T., Robinson M., Thomson B., Graetz N., Margono C., Mullany E.C., Biryukov S., Abbafati C., Abera S.F., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study. Lancet. 2014;384:766–781. doi: 10.1016/S0140-6736(14)60460-8. PubMed DOI PMC
Park J.-Y., Ha J., Choi Y., Chang P.-S., Park K.-M. Optimization of Spectrophotometric and Fluorometric Assays Using Alternative Substrates for the High-Throughput Screening of Lipase Activity. J. Chem. 2021;2021:3688124. doi: 10.1155/2021/3688124. DOI
Aslanzadeh S., Ishola M.M., Richards T., Taherzadeh M.J. An overview of existing individual unit operations. Biorefineries. 2014:3–36. doi: 10.1016/B978-0-444-59498-3.00001-4. DOI
Kamal M.Z., Yedavalli P., Deshmukh M.V., Rao N.M. Lipase in aqueous-polar organic solvents: Activity, structure, and stability. Protein Sci. 2013;22:904–915. doi: 10.1002/pro.2271. PubMed DOI PMC
Kim G.-N., Shin M.-R., Shin S.H., Lee A.R., Lee J.Y., Seo B.-I., Kim M.Y., Kim T.H., Noh J.S., Rhee M.H., et al. Study of Antiobesity Effect through Inhibition of Pancreatic Lipase Activity of Diospyros kaki Fruit and Citrus unshiu Peel. Biomed Res. Int. 2016;2016:1723042. doi: 10.1155/2016/1723042. PubMed DOI PMC
Zhang J., Kang M.-J., Kim M.-J., Kim M.-E., Song J.-H., Lee Y.-M., Kim J.-I. Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo. Nutr. Res. Pract. 2008;2:200–203. doi: 10.4162/nrp.2008.2.4.200. PubMed DOI PMC
Hou X.-D., Ge G.-B., Weng Z.-M., Dai Z.-R., Leng Y.-H., Ding L.-L., Jin L.-L., Yu Y., Cao Y.-F., Hou J. Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorg. Chem. 2018;80:577–584. doi: 10.1016/j.bioorg.2018.07.011. PubMed DOI
Dechakhamphu A., Wongchum N. Investigation of the kinetic properties of Phyllanthus chamaepeuce Ridl. extracts for the inhibition of pancreatic lipase activity. J. Herb. Med. 2022;32:100508. doi: 10.1016/j.hermed.2021.100508. DOI
Stojakowska A., Malarz J., Szewczyk A., Kisiel W. Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol. Plant. 2012;34:291–298. doi: 10.1007/s11738-011-0827-4. DOI
Hernández-Saavedra D., Pérez-Ramírez I.F., Ramos-Gómez M., Mendoza-Díaz S., Loarca-Pina G., Reynoso-Camacho R. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med. Chem. Res. 2016;25:163–172. doi: 10.1007/s00044-015-1454-1. DOI
Zaki A., Ashour A., Mira A., Kishikawa A., Nakagawa T., Zhu Q., Shimizu K. Biological activities of oleanolic acid derivatives from Calendula officinalis seeds. Phyther. Res. 2016;30:835–841. doi: 10.1002/ptr.5589. PubMed DOI
Sharma N., Sharma V.K., Seo S.-Y. Screening of some medicinal plants for anti-lipase activity. J. Ethnopharmacol. 2005;97:453–456. doi: 10.1016/j.jep.2004.11.009. PubMed DOI
Danış O., Ogan A., Anbar D., Basak Yuce D., Demir S., Salan U. Inhibition of pancreatic lipase by culinary plant extracts. Int. J. Plant Biol. Res. 2015;3:1038.
Schymanski E.L., Jeon J., Gulde R., Fenner K., Ruff M., Singer H.P., Hollender J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014;48:2097–2098. doi: 10.1021/es5002105. PubMed DOI
Rahim A.T.M.A., Takahashi Y., Yamaki K. Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols. Food Res. Int. 2015;75:289–294. doi: 10.1016/j.foodres.2015.05.017. PubMed DOI
Wang S., Sun Z., Dong S., Liu Y., Liu Y. Molecular interactions between (−)-epigallocatechin gallate analogs and pancreatic lipase. PLoS ONE. 2014;9:e111143. doi: 10.1371/journal.pone.0111143. PubMed DOI PMC
Nakai M., Fukui Y., Asami S., Toyoda-Ono Y., Iwashita T., Shibata H., Mitsunaga T., Hashimoto F., Kiso Y. Inhibitory Effects of Oolong Tea Polyphenols on Pancreatic Lipase in Vitro. J. Agric. Food Chem. 2005;53:4593–4598. doi: 10.1021/jf047814+. PubMed DOI
Hu B., Cui F., Yin F., Zeng X., Sun Y., Li Y. Caffeoylquinic acids competitively inhibit pancreatic lipase through binding to the catalytic triad. Int. J. Biol. Macromol. 2015;80:529–535. doi: 10.1016/j.ijbiomac.2015.07.031. PubMed DOI
Mottaghipisheh J., Taghrir H., Boveiri Dehsheikh A., Zomorodian K., Irajie C., Mahmoodi Sourestani M., Iraji A. Linarin, a Glycosylated Flavonoid, with Potential Therapeutic Attributes: A Comprehensive Review. Pharm. 2021;14:1104. doi: 10.3390/ph14111104. PubMed DOI PMC
Slanc P., Doljak B., Kreft S., Lunder M., Janeš D., Štrukelj B. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Phyther. Res. Int. J. Devoted to Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009;23:874–877. doi: 10.1002/ptr.2718. PubMed DOI
Navratilova K., Hurkova K., Hrbek V., Uttl L., Tomaniova M., Valli E., Hajslova J. Metabolic fingerprinting strategy: Investigation of markers for the detection of extra virgin olive oil adulteration with soft-deodorized olive oils. Food Control. 2022;134:108649. doi: 10.1016/j.foodcont.2021.108649. DOI
Koulis G.A., Tsagkaris A.S., Aalizadeh R., Dasenaki M.E., Panagopoulou E.I., Drivelos S., Halagarda M., Georgiou C.A., Proestos C., Thomaidis N.S. Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics. Molecules. 2021;26:2769. doi: 10.3390/molecules26092769. PubMed DOI PMC
Koulis G.A., Tsagkaris A.S., Katsianou P.A., Gialouris P.-L.P., Martakos I., Stergiou F., Fiore A., Panagopoulou E.I., Karabournioti S., Baessmann C., et al. Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography—High-Resolution Mass Spectrometry. Molecules. 2022;27:4444. doi: 10.3390/molecules27144444. PubMed DOI PMC
Abdossi V., Kazemi M. Bioactivities of Achillea millefolium essential oil and its main terpenes from Iran. Int. J. Food Prop. 2016;19:1798–1808. doi: 10.1080/10942912.2015.1086787. DOI
Ferracane R., Graziani G., Gallo M., Fogliano V., Ritieni A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010;51:399–404. doi: 10.1016/j.jpba.2009.03.018. PubMed DOI
Petropoulos S.A., Fernandes Â., Tzortzakis N., Sokovic M., Ciric A., Barros L., Ferreira I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019;119:859–868. doi: 10.1016/j.foodres.2018.10.069. PubMed DOI
Lusa M.G., Martucci M.E.P., Loeuille B.F.P., Gobbo-Neto L., Appezzato-da-Glória B., Da Costa F.B. Characterization and evolution of secondary metabolites in Brazilian Vernonieae (Asteraceae) assessed by LC-MS fingerprinting. Bot. J. Linn. Soc. 2016;182:594–611. doi: 10.1111/boj.12480. DOI
Burlec A.F., Arsene C., Gille E., Hăncianu M., Cioancă O. Ornamental Asteraceae species as new sources of secondary metabolites. Indian J Pharma Educ Res. 2017;51:S425–S428. doi: 10.5530/ijper.51.3s.61. DOI
Pljevljakušić D., Bigović D., Janković T., Jelačić S., Šavikin K. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties. Front. Plant Sci. 2018;9:1123. doi: 10.3389/fpls.2018.01123. PubMed DOI PMC
Rajan L., Palaniswamy D., Mohankumar S.K. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol. Res. 2020;155:104681. doi: 10.1016/j.phrs.2020.104681. PubMed DOI
Ak G., Zengin G., Ceylan R., Fawzi Mahomoodally M., Jugreet S., Mollica A., Stefanucci A. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr. J. 2021;36:554–563. doi: 10.1002/ffj.3661. DOI
Butnariu M., Coradini C.Z. Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry. Chem. Cent. J. 2012;6:1–7. doi: 10.1186/1752-153X-6-35. PubMed DOI PMC
El Moghazy A.M., Darwish F.M., El Khayat E.S., Mohamed M.O., Wink M., El Readi M.Z. New Hexadecan-2-ol and 3-Hydroxymethyloctadecanoate with Hepatoprotective Activity and Cytotoxicity Activity from Grindelia camporum Greene (Asteraceae) Planta Med. 2011;77:PG91. doi: 10.1055/s-0031-1282575. DOI
Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism. Molecules. 2017;22:1942. doi: 10.3390/molecules22111942. PubMed DOI PMC
Corchete P. Bioactive Molecules and Medicinal Plants. Springer; Berlin/Heidelberg, Germany: 2008. Silybum marianum (L.) Gaertn: The source of silymarin; pp. 123–148.
Tajmohammadi A., Razavi B.M., Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phyther. Res. 2018;32:1933–1949. doi: 10.1002/ptr.6153. PubMed DOI
Ali S., Zameer S., Yaqoob M. Ethnobotanical, phytochemical and pharmacological properties of Galinsoga parviflora (Asteraceae): A review. Trop. J. Pharm. Res. 2017;16:3023–3033.
Ayaz F.A., Ozcan M., Kurt A., Karayigit B., Ozogul Y., Glew R., Ozogul F. Fatty acid composition and antioxidant capacity of cypselas in Centaurea s.l. taxa (Asteraceae, Cardueae) from NE Anatolia. S. Afr. J. Bot. 2017;112:474–482. doi: 10.1016/j.sajb.2017.06.033. DOI
Soetardjo S., Jong P.C., Noor A.M., Lachimanan Y.L., Sreenivasan S. Chemical composition and biological activity of the Centipeda minima (Asteraceae) Malays. J. Nutr. 2007;13:81–87. PubMed
Kuczmannová A., Gál P., Varinská L., Treml J., Kováč I., Novotný M., Vasilenko T., Dall’Acqua S., Nagy M., Mučaji P. Agrimonia eupatoria L. and Cynara cardunculus L. water infusions: Phenolic profile and comparison of antioxidant activities. Molecules. 2015;20:20538–20550. doi: 10.3390/molecules201119715. PubMed DOI PMC
Lin L.-Z., Harnly J.M. Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat) Food Chem. 2010;120:319–326. doi: 10.1016/j.foodchem.2009.09.083. DOI
Salomon L., Lorenz P., Bunse M., Spring O., Stintzing F.C., Kammerer D.R. Comparison of the Phenolic Compound Profile and Antioxidant Potential of Achillea atrata L. and Achillea millefolium L. Molecules. 2021;26:1530. doi: 10.3390/molecules26061530. PubMed DOI PMC
Palić R., Stojanović G., Ranđelović N., Ranđelović V., Veličković J. The fatty acids from plants of the genus Achillea. Facta Univ. Phys. Chem. Technol. 2000;2:101–104.
Chen S., Liu J., Dong G., Zhang X., Liu Y., Sun W., Liu A. Flavonoids and caffeoylquinic acids in Chrysanthemum morifolium Ramat flowers: A potentially rich source of bioactive compounds. Food Chem. 2021;344:128733. doi: 10.1016/j.foodchem.2020.128733. PubMed DOI