Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics

. 2021 May 08 ; 26 (9) : . [epub] 20210508

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid34066694

Grantová podpora
2084 Hellenic Foundation for Research and Innovation

Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.

Zobrazit více v PubMed

Danezis G.P., Tsagkaris A.S., Camin F., Brusic V., Georgiou C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016;85:123–132.

Alvarez-Suarez J.M., Giampieri F., Battino M. Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem. 2013;20:621–638. doi: 10.2174/092986713804999358. PubMed DOI

Pita-Calvo C., Vázquez M. Differences between honeydew and blossom honeys: A review. Trends Food Sci. Technol. 2017;59:79–87. doi: 10.1016/j.tifs.2016.11.015. DOI

Tsagkaris A.S., Koulis G.A., Danezis G.P., Martakos I., Dasenaki M., Georgiou C.A., Thomaidis N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021;11:11273–11294. doi: 10.1039/D1RA00069A. PubMed DOI PMC

Jamil Noor M., Ahmad M., Ashraf M.A., Zafar M., Sultana S. A review of the pollen analysis of South Asian honey to identify the bee floras of the region. Palynology. 2016;40:54–65. doi: 10.1080/01916122.2014.988383. DOI

Arvanitoyannis I.S., Chalhoub C., Gotsiou P., Lydakis-Simantiris N., Kefalas P. Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Crit. Rev. Food Sci. Nutr. 2005;45:193–203. doi: 10.1080/10408690590956369. PubMed DOI

Molan P.C. The limitations of the methods of identifying the floral source of honeys. Bee World. 1998;79:59–68. doi: 10.1080/0005772X.1998.11099381. DOI

Silvano M.F., Varela M.S., Palacio M.A., Ruffinengo S., Yamul D.K. Physicochemical parameters and sensory properties of honeys from Buenos Aires region. Food Chem. 2014;152:500–507. doi: 10.1016/j.foodchem.2013.12.011. PubMed DOI

Karabagias I.K., Badeka A., Kontakos S., Karabournioti S., Kontominas M.G. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem. 2014;146:548–557. doi: 10.1016/j.foodchem.2013.09.105. PubMed DOI

Oroian M., Amariei S., Leahu A., Gutt G. Multi-Element Composition of Honey as a Suitable Tool for Its Authenticity Analysis. Pol. J. Food Nutr. Sci. 2015;65:93–100. doi: 10.1515/pjfns-2015-0018. DOI

Spiteri M., Rogers K.M., Jamin E., Thomas F., Guyader S., Lees M., Rutledge D.N. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Food Chem. 2017;217:766–772. doi: 10.1016/j.foodchem.2016.09.027. PubMed DOI

Kuballa T., Brunner T.S., Thongpanchang T., Walch S.G., Lachenmeier D.W. Application of NMR for authentication of honey, beer and spices. Curr. Opin. Food Sci. 2018;19:57–62. doi: 10.1016/j.cofs.2018.01.007. DOI

Strelec I., Brodar L., Flanjak I., Kenjerić F.Č., Kovač T., Kenjerić D.Č., Primorac L. Characterization of Croatian honeys by right-angle fluorescence spectroscopy and chemometrics. Food Anal. Methods. 2018;11:824–838. doi: 10.1007/s12161-017-1059-z. DOI

Dinca O.R., Ionete R.E., Popescu R., Costinel D., Radu G.L. Geographical and Botanical Origin Discrimination of Romanian Honey Using Complex Stable Isotope Data and Chemometrics. Food Anal. Methods. 2015;8:401–412. doi: 10.1007/s12161-014-9903-x. DOI

Seisonen S., Kivima E., Vene K. Characterisation of the aroma profiles of different honeys and corresponding flowers using solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry. Food Chem. 2015;169:34–40. doi: 10.1016/j.foodchem.2014.07.125. PubMed DOI

Gerhardt N., Birkenmeier M., Schwolow S., Rohn S., Weller P. Volatile-Compound Fingerprinting by Headspace-Gas-Chromatography Ion-Mobility Spectrometry (HS-GC-IMS) as a Benchtop Alternative to 1 H NMR Profiling for Assessment of the Authenticity of Honey. Anal. Chem. 2018;90:1777–1785. doi: 10.1021/acs.analchem.7b03748. PubMed DOI

Aloglu A.K., Harrington P.D.B., Sahin S., Demir C., Gunes M.E. Chemical profiling of floral and chestnut honey using high-performance liquid chromatography-ultraviolet detection. J. Food Compos. Anal. 2017;62:205–210. doi: 10.1016/j.jfca.2017.06.002. DOI

Oroian M., Ropciuc S. Honey authentication based on physicochemical parameters and phenolic compounds. Comput. Electron. Agric. 2017;138:148–156. doi: 10.1016/j.compag.2017.04.020. DOI

Gašić U.M., Milojković-Opsenica D.M., Tešić Ž.L. Polyphenols as possible markers of botanical origin of honey. J. AOAC Int. 2017;100:852–861. doi: 10.5740/jaoacint.17-0144. PubMed DOI

Cianciosi D., Forbes-Hernández T.Y., Afrin S., Gasparrini M., Reboredo-Rodriguez P., Manna P.P., Zhang J., Lamas L.B., Flórez S.M., Toyos P.A., et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules. 2018;23:2322. doi: 10.3390/molecules23092322. PubMed DOI PMC

Ciulu M., Spano N., Pilo M.I., Sanna G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules. 2016;21:451. doi: 10.3390/molecules21040451. PubMed DOI PMC

Jandrić Z., Frew R.D., Fernandez-Cedi L.N., Cannavan A. An investigative study on discrimination of honey of various floral and geographical origins using UPLC-QToF MS and multivariate data analysis. Food Control. 2017;72:189–197. doi: 10.1016/j.foodcont.2015.10.010. DOI

Esslinger S., Riedl J., Fauhl-Hassek C. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res. Int. 2014;60:189–204. doi: 10.1016/j.foodres.2013.10.015. DOI

Cavanna D., Righetti L., Elliott C., Suman M. The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. Trends Food Sci. Technol. 2018;80:223–241. doi: 10.1016/j.tifs.2018.08.007. DOI

Trautvetter S., Koelling-Speer I., Speer K. Confirmation of phenolic acids and flavonoids in honeys by UPLC-MS. Apidologie. 2009;40:140–150. doi: 10.1051/apido/2008072. DOI

Kečkeš S., Gašić U., Veličković T.Ć., Milojković-Opsenica D., Natić M., Tešić Ž. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013;138:32–40. doi: 10.1016/j.foodchem.2012.10.025. PubMed DOI

Gašić U., Kečkeš S., Dabić D., Trifković J., Milojković-Opsenica D., Natić M., Tešić Z. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014;145:599–607. doi: 10.1016/j.foodchem.2013.08.088. PubMed DOI

Gašić U.M., Natić M.M., Mišić D.M., Lušić D.V., Milojković-Opsenica D.M., Tešić Ž.L., Lušić D. Chemical markers for the authentication of unifloral Salvia officinalis L. honey. J. Food Compos. Anal. 2015;44:128–138. doi: 10.1016/j.jfca.2015.08.008. DOI

Li Y., Jin Y., Yang S., Zhang W., Zhang J., Zhao W., Chen L., Wen Y., Zhang Y., Lu K., et al. Strategy for comparative untargeted metabolomics reveals honey markers of different floral and geographic origins using ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry. J. Chromatogr. A. 2017;1499:78–89. doi: 10.1016/j.chroma.2017.03.071. PubMed DOI

Jandrić Z., Haughey S.A., Frew R.D., McComb K., Galvin-King P., Elliott C.T., Cannavan A. Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chem. 2015;189:52–59. doi: 10.1016/j.foodchem.2014.11.165. PubMed DOI

Spiteri M., Dubin E., Cotton J., Poirel M., Corman B., Jamin E., Lees M., Rutledge D. Data fusion between high resolution 1 H-NMR and mass spectrometry: A synergetic approach to honey botanical origin characterization. Anal. Bioanal. Chem. 2016;408:4389–4401. doi: 10.1007/s00216-016-9538-4. PubMed DOI

Galanakis C.M., Goulas V., Tsakona S., Manganaris G.A., Gekas V. A knowledge base for the recovery of natural phenols with different solvents. Int. J. Food Prop. 2013;16:382–396. doi: 10.1080/10942912.2010.522750. DOI

Kaškoniene V., Venskutonis P.R. Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Compr. Rev. Food Sci. Food Saf. 2010;9:620–634. doi: 10.1111/j.1541-4337.2010.00130.x. PubMed DOI

Silici S., Sarioglu K., Karaman K. Determination of polyphenols of some turkish honeydew and nectar honeys using HPLC-DAD. J. Liq. Chromatogr. Relat. Technol. 2013;36:2330–2341. doi: 10.1080/10826076.2012.720332. DOI

Campillo N., Viñas P., Férez-Melgarejo G., Hernández-Córdoba M. Dispersive liquid-liquid microextraction for the determination of flavonoid aglycone compounds in honey using liquid chromatography with diode array detection and time-of-flight mass spectrometry. Talanta. 2015;131:185–191. doi: 10.1016/j.talanta.2014.07.083. PubMed DOI

Dimitrova B., Gevrenova R., Anklam E. Analysis of phenolic acids in honeys of different floral origin by solid-phase extraction and high-performance liquid chromatography. Phytochem. Anal. 2007;18:24–32. doi: 10.1002/pca.948. PubMed DOI

Can Z., Yildiz O., Sahin H., Akyuz Turumtay E., Silici S., Kolayli S. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015;180:133–141. doi: 10.1016/j.foodchem.2015.02.024. PubMed DOI

Biesaga M., Pyrzynska K. Liquid chromatography/tandem mass spectrometry studies of the phenolic compounds in honey. J. Chromatogr. A. 2009;1216:6620–6626. doi: 10.1016/j.chroma.2009.07.066. PubMed DOI

Aalizadeh R., Nika M.-C., Thomaidis N.S. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J. Hazard. Mater. 2019;363:277–285. doi: 10.1016/j.jhazmat.2018.09.047. PubMed DOI

Ruttkies C., Schymanski E.L., Wolf S., Hollender J., Neumann S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J. Cheminform. 2016;8:1–16. doi: 10.1186/s13321-016-0115-9. PubMed DOI PMC

Tuberoso C.I.G., Bifulco E., Caboni P., Cottiglia F., Cabras P., Floris I. Floral markers of strawberry tree (Arbutus unedo L.) honey. J. Agric. Food Chem. 2010;58:384–389. doi: 10.1021/jf9024147. PubMed DOI

Baliño P., Gómez-Cadenas A., López-Malo D., Romero F.J., Muriach M. Is there a role for abscisic acid, a proven anti-inflammatory agent, in the treatment of ischemic retinopathies? Antioxidants. 2019;8:104. doi: 10.3390/antiox8040104. PubMed DOI PMC

Bertoncelj J., Polak T., Kropf U., Korošec M., Golob T. LC-DAD-ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chem. 2011;127:296–302. doi: 10.1016/j.foodchem.2011.01.003. DOI

Silva T.M., dos Santos F.P., Evangelista-Rodrigues A., da Silva E.M., da Silva G.S., de Novais J.S., dos Santos F.D., Camara C.A. Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. J. Food Compos. Anal. 2013;29:10–18. doi: 10.1016/j.jfca.2012.08.010. DOI

Jerković I., Kuś P.M., Tuberoso C.I.G., Šarolić M. Phytochemical and physical-chemical analysis of Polish willow (Salix spp.) honey: Identification of the marker compounds. Food Chem. 2014;145:8–14. doi: 10.1016/j.foodchem.2013.08.004. PubMed DOI

Campone L., Piccinelli A.L., Pagano I., Carabetta S., Di Sanzo R., Russo M., Rastrelli L. Determination of phenolic compounds in honey using dispersive liquid-liquid microextraction. J. Chromatogr. A. 2014;1334:9–15. doi: 10.1016/j.chroma.2014.01.081. PubMed DOI

Deiana V., Tuberoso C., Satta A., Pinna C., Camarda I., Spano N., Ciulu M., Floris I. Relationship between markers of botanical origin in nectar and honey of the strawberry tree (Arbutus unedo) throughout flowering periods in different years and in different geographical areas. J. Apic. Res. 2015;54:342–349. doi: 10.1080/00218839.2016.1164540. DOI

Tomas-Barberan F.A., Martos I., Ferreres F., Radovic B.S., Anklam E. HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J. Sci. Food Agric. 2001;81:485–496. doi: 10.1002/jsfa.836. DOI

Bobis O., Mărghitaş A.l.L., Bonta V., Dezmirean D., Maghear O. Free phenolic acids, flavonoids and abscisic acid related to HPLC sugar profile in acacia honey. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2007;64:179–185.

Martos I., Ferreres F., Tomás-Barberán F.A. Identification of flavonoid markers for the botanical origin of Eucalyptus honey. J. Agric. Food Chem. 2000;48:1498–1502. doi: 10.1021/jf991166q. PubMed DOI

Zieliński Ł., Deja S., Jasicka-Misiak I., Kafarski P. Chemometrics as a tool of origin determination of polish monofloral and multifloral honeys. J. Agric. Food Chem. 2014;62:2973–2981. doi: 10.1021/jf4056715. PubMed DOI

Tuberoso C.I.G., Bifulco E., Caboni P., Sarais G., Cottiglia F., Floris I. Lumichrome and phenyllactic acid as chemical markers of thistle (Galactites tomentosa Moench) honey. J. Agric. Food Chem. 2011;59:364–369. doi: 10.1021/jf1039074. PubMed DOI

Oelschlaegel S., Gruner M., Wang P.N., Boettcher A., Koelling-Speer I., Speer K. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. J. Agric. Food Chem. 2012;60:7229–7237. doi: 10.1021/jf300888q. PubMed DOI

Beitlich N., Koelling-Speer I., Oelschlaegel S., Speer K. Differentiation of manuka honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. J. Agric. Food Chem. 2014;62:6435–6444. doi: 10.1021/jf501818f. PubMed DOI

Cabras P., Angioni A., Tuberoso C., Floris I., Reniero F., Guillou C., Ghelli S. Homogentisic acid: A phenolic acid as a marker of strawberry-tree (Arbutus unedo) honey. J. Agric. Food Chem. 1999;47:4064–4067. doi: 10.1021/jf990141o. PubMed DOI

Scanu R., Spano N., Panzanelli A., Pilo M.I., Piu P.C., Sanna G., Tapparo A. Direct chromatographic methods for the rapid determination of homogentisic acid in strawberry tree (Arbutus unedo L.) honey. J. Chromatogr. A. 2005;1090:76–80. doi: 10.1016/j.chroma.2005.06.092. PubMed DOI

Andrade P., Ferreres F., Gil M.I., Tomás-Barberán F.A. Determination of phenolic compounds in honeys with different floral origin by capillary zone electrophoresis. Food Chem. 1997;60:79–84. doi: 10.1016/S0308-8146(96)00313-5. DOI

Tuberoso C.I.G., Bifulco E., Jerkovic I., Caboni P., Cabras P., Floris I. Methyl syringate: A chemical marker of asphodel (asphodelus microcarpus salzm. et viv.) monofloral honey. J. Agric. Food Chem. 2009;57:3895–3900. doi: 10.1021/jf803991j. PubMed DOI

Joshi R., Gangabhagirathi R., Venu S., Adhikari S., Mukherjee T. Antioxidant activity and free radical scavenging reactions of gentisic acid: In-vitro and pulse radiolysis studies. Free Radic. Res. 2012;46:11–20. doi: 10.3109/10715762.2011.633518. PubMed DOI

Gómez-Caravaca A.M., Gómez-Romero M., Arráez-Román D., Segura-Carretero A., Fernández-Gutiérrez A. Advances in the analysis of phenolic compounds in products derived from bees. J. Pharm. Biomed. Anal. 2006;41:1220–1234. doi: 10.1016/j.jpba.2006.03.002. PubMed DOI

Krauss M., Singer H., Hollender J. LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns. Anal. Bioanal. Chem. 2010;397:943–951. doi: 10.1007/s00216-010-3608-9. PubMed DOI

Gago-Ferrero P., Schymanski E.L., Bletsou A.A., Aalizadeh R., Hollender J., Thomaidis N.S. Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environ. Sci. Technol. 2015;49:12333–12341. doi: 10.1021/acs.est.5b03454. PubMed DOI

Truchado P., Ferreres F., Bortolotti L., Sabatini A.G., Tomás-Barberán F.A. Nectar flavonol rhamnosides are floral markers of acacia (Robinia pseudacacia) honey. J. Agric. Food Chem. 2008;56:8815–8824. doi: 10.1021/jf801625t. PubMed DOI

Beretta G., Granata P., Ferrero M., Orioli M., Facino R.M. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta. 2005;533:185–191. doi: 10.1016/j.aca.2004.11.010. DOI

da Silva I.A.A., da Silva T.M.S., Camara C.A., Queiroz N., Magnani M., de Novais J.S., Soledade L.E.B., Lima E.D.E.O., de Souza A.L., de Souza A.G. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem. 2013;141:3552–3558. doi: 10.1016/j.foodchem.2013.06.072. PubMed DOI

Cherchi A., Spanedda L., Tuberoso C., Cabras P. Solid-phase extraction and high-performance liquid chromatographic determination of organic acids in honey. J. Chromatogr. A. 1994;669:59–64. doi: 10.1016/0021-9673(94)80336-6. DOI

Stephens J.M., Schlothauer R.C., Morris B.D., Yang D., Fearnley L., Greenwood D.R., Loomes K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem. 2010;120:78–86. doi: 10.1016/j.foodchem.2009.09.074. DOI

Hadjmohammadi M.R., Nazari S., Kamel K. Determination of Flavonoid Markers in Honey with SPE and LC using Experimental Design. Chromatographia. 2009;69:1291–1297. doi: 10.1365/s10337-009-1073-4. DOI

Yaoa L., Jiang Y., Singanusong R., Datta N., Raymont K. Phenolic acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for floral authentication. Food Res. Int. 2005;38:651–658. doi: 10.1016/j.foodres.2005.01.002. DOI

Andrade P., Ferreres F., Teresa Amaral M. Analysis of honey phenolic acids by HPLC, its application to honey botanical characterization. J. Liq. Chromatogr. Relat. Technol. 1997;20:2281–2288. doi: 10.1080/10826079708006563. DOI

Lianda R.L.P., D’Oliveira Sant’Ana L., Echevarria A., Castro R.N. Antioxidant activity and phenolic composition of brazilian honeys and their extracts. J. Braz. Chem. Soc. 2012;23:618–627. doi: 10.1590/S0103-50532012000400006. DOI

Lachman J., Orsák M., Hejtmánková A., Kovářová E. Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT Food Sci. Technol. 2010;43:52–58. doi: 10.1016/j.lwt.2009.06.008. DOI

Viuda-Martos M., Ruiz-Navajas Y., Fernández-López J., Pérez-Álvarez J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 2008;73:117–124. doi: 10.1111/j.1750-3841.2008.00966.x. PubMed DOI

Kalogiouri N.P., Alygizakis N.A., Aalizadeh R., Thomaidis N.S. Olive oil authenticity studies by target and nontarget LC–QTOF-MS combined with advanced chemometric techniques. Anal. Bioanal. Chem. 2016;408:7955–7970. doi: 10.1007/s00216-016-9891-3. PubMed DOI

FiehnLab MassBank of North America. [(accessed on 9 March 2021)];2019 Available online: http://mona.fiehnlab.ucdavis.edu/

Smith C.A., O’Maille G., Want E.J., Qin C., Trauger S.A., Brandon T.R., Custodio D.E., Abagyan R., Siuzdak G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005;27:747–751. doi: 10.1097/01.ftd.0000179845.53213.39. PubMed DOI

Wolf S., Schmidt S., Müller-Hannemann M., Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010;11:1–12. doi: 10.1186/1471-2105-11-148. PubMed DOI PMC

Aalizadeh R., Thomaidis N.S., Bletsou A.A., Gago-Ferrero P. Quantitative Structure-Retention Relationship Models to Support Nontarget High-Resolution Mass Spectrometric Screening of Emerging Contaminants in Environmental Samples. J. Chem. Inf. Model. 2016;56:1384–1398. doi: 10.1021/acs.jcim.5b00752. PubMed DOI

Polykarpos B., Nikolaos S., Thomaidis R.A. Minimizing analytical procedural mass spectral features as false positive peaks in untargeted liquid chromatography—High resolutin mass spectrometry; Proceedings of the 11th Aegean Analytical Chemistry Days; Crete, Greece. 25–29 September 2018; p. 70.

Schymanski E.L., Williams A.J. Open Science for Identifying “Known Unknown” Chemicals. Environ. Sci. Technol. 2017;51:5357–5359. doi: 10.1021/acs.est.7b01908. PubMed DOI PMC

Schymanski E.L., Jeon J., Gulde R., Fenner K., Ruff M., Singer H.P., Hollender J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014;48:2097–2098. doi: 10.1021/es5002105. PubMed DOI

Aalizadeh R., Thomaidis N.S. AutoSuspect: An R package to Perform Automatic Suspect Screening based on Regulatory Databases; Proceedings of the 11th Aegean Analytical Chemistry Days; Crete, Greece. 25–29 September 2018; p. 32.

Keun H.C., Ebbels T.M.D., Antti H., Bollard M.E., Beckonert O., Holmes E., Lindon J.C., Nicholson J.K. Improved analysis of multivariate data by variable stability scaling: Application to NMR-based metabolic profiling. Anal. Chim. Acta. 2003;490:265–276. doi: 10.1016/S0003-2670(03)00094-1. DOI

van den Berg R.A., Hoefsloot H.C.J., Westerhuis J.A., Smilde A.K., van der Werf M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006;7:1–15. doi: 10.1186/1471-2164-7-142. PubMed DOI PMC

Barker M., Rayens W. Partial least squares for discrimination. J. Chemom. 2003;17:166–173. doi: 10.1002/cem.785. DOI

Chong I.G., Jun C.H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005;78:103–112. doi: 10.1016/j.chemolab.2004.12.011. DOI

Taylor P., Kennard R.W., Stone L.A. Technometrics Computer Aided Design of Experiments. Technometric. 1969;11:137–148.

Kalogiouri N.P., Aalizadeh R., Thomaidis N.S. Application of an advanced and wide scope non-target screening workflow with LC-ESI-QTOF-MS and chemometrics for the classification of the Greek olive oil varieties. Food Chem. 2018;256:53–61. doi: 10.1016/j.foodchem.2018.02.101. PubMed DOI

Ballabio D., Consonni V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods. 2013;5:3790–3798. doi: 10.1039/c3ay40582f. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...