Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography-High-Resolution Mass Spectrometry
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35889316
PubMed Central
PMC9323402
DOI
10.3390/molecules27144444
PII: molecules27144444
Knihovny.cz E-zdroje
- Klíčová slova
- Greek honey, authenticity, botanical origin, chemometrics, discrimination, high-resolution mass spectrometry, honey, metabolomics, phenolic compounds,
- MeSH
- biologické markery MeSH
- chromatografie kapalinová MeSH
- fenoly analýza MeSH
- hmotnostní spektrometrie metody MeSH
- med * analýza MeSH
- Thymus (rostlina) * chemie MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Řecko MeSH
- Názvy látek
- biologické markery MeSH
- fenoly MeSH
Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches.
Attiki Honey SA Kryoneri Attikis 14568 Athens Greece
Bruker Daltonik GmbH Fahrenheitstraße 4 28359 Bremen Germany
Zobrazit více v PubMed
Afrin S., Haneefa S.M., Fernandez-Cabezudo M.J., Giampieri F., Al-Ramadi B.K., Battino M. Therapeutic and preventive properties of honey and its bioactive compounds in cancer: An evidence-based review. Nutr. Res. Rev. 2020;33:50–76. doi: 10.1017/S0954422419000192. PubMed DOI
Raptopoulou K.G., Pasias I.N., Proestos C. Recent Advances in Analytical Techniques for the Determination of Authenticity and Adulteration of Honey and its Products. Recent Adv. Anal. Tech. 2020;4:125–145.
Tsagkaris A.S., Koulis G.A., Danezis G.P., Martakos I., Dasenaki M., Georgiou C.A., Thomaidis N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021;11:11273–11294. doi: 10.1039/D1RA00069A. PubMed DOI PMC
Oymen B., Aşır S., Türkmen D., Denizli A. Determination of multi-pesticide residues in honey with a modified QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. J. Apic. Res. 2021:1–13. doi: 10.1080/00218839.2021.2017540. DOI
Soyseven M., Sezgin B., Arli G. A novel, rapid and robust HPLC-ELSD method for simultaneous determination of fructose, glucose and sucrose in various food samples: Method development and validation. J. Food Compos. Anal. 2022;107:104400. doi: 10.1016/j.jfca.2022.104400. DOI
Vazquez L., Armada D., Celeiro M., Dagnac T., Llompart M. Evaluating the Presence and Contents of Phytochemicals in Honey Samples: Phenolic Compounds as Indicators to Identify Their Botanical Origin. Foods. 2021;10:2616. doi: 10.3390/foods10112616. PubMed DOI PMC
Wang X., Li Y., Chen L., Zhou J. Analytical Strategies for LC–MS-Based Untargeted and Targeted Metabolomics Approaches Reveal the Entomological Origins of Honey. J. Agric. Food Chem. 2022;70:1358–1366. doi: 10.1021/acs.jafc.1c07153. PubMed DOI
Habib H.M., Kheadr E., Ibrahim W.H. Inhibitory effects of honey from arid land on some enzymes and protein damage. Food Chem. 2021;364:130415. doi: 10.1016/j.foodchem.2021.130415. PubMed DOI
Xagoraris M., Skouria A., Revelou P.-K., Alissandrakis E., Tarantilis P.A., Pappas C.S. Response Surface Methodology to Optimize the Isolation of Dominant Volatile Compounds from Monofloral Greek Thyme Honey Using SPME-GC-MS. Molecules. 2021;26:3612. doi: 10.3390/molecules26123612. PubMed DOI PMC
Tsavea E., Vardaka F.-P., Savvidaki E., Kellil A., Kanelis D., Bucekova M., Grigorakis S., Godocikova J., Gotsiou P., Dimou M., et al. Physicochemical Characterization and Biological Properties of Pine Honey Produced across Greece. Foods. 2022;11:943. doi: 10.3390/foods11070943. PubMed DOI PMC
Graikou K., Andreou A., Chinou I. Chemical profile οf Greek Arbutus unedo honey: Biological properties. J. Apic. Res. 2022;61:100–106. doi: 10.1080/00218839.2021.1917860. DOI
Koulis G.A., Tsagkaris A.S., Aalizadeh R., Dasenaki M.E., Panagopoulou E.I., Drivelos S., Halagarda M., Georgiou C.A., Proestos C., Thomaidis N.S. Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics. Molecules. 2021;26:2769. doi: 10.3390/molecules26092769. PubMed DOI PMC
Gašić U., Kečkeš S., Dabić D., Trifković J., Milojković-Opsenica D., Natić M., Tešić Z. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014;145:599–607. doi: 10.1016/j.foodchem.2013.08.088. PubMed DOI
Cheung Y., Meenu M., Yu X., Xu B. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. Int. J. Food Prop. 2019;22:290–308. doi: 10.1080/10942912.2019.1579835. DOI
Escriche I., Kadar M., Juan-Borrás M., Domenech E. Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Res. Int. 2011;44:1504–1513. doi: 10.1016/j.foodres.2011.03.049. DOI
Can Z., Yildiz O., Sahin H., Akyuz Turumtay E., Silici S., Kolayli S. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015;180:133–141. doi: 10.1016/j.foodchem.2015.02.024. PubMed DOI
Sahin H. Honey as an apitherapic product: Its inhibitory effect on urease and xanthine oxidase. J. Enzyme Inhib. Med. Chem. 2016;31:490–494. doi: 10.3109/14756366.2015.1039532. PubMed DOI
Kolayli S., Sahin H., Can Z., Yildiz O., Sahin K. Honey shows potent inhibitory activity against the bovine testes hyaluronidase. J. Enzyme Inhib. Med. Chem. 2016;31:599–602. doi: 10.3109/14756366.2015.1054819. PubMed DOI
Recklies K., Peukert C., Kölling-Speer I., Speer K. Differentiation of Honeydew Honeys from Blossom Honeys and According to Their Botanical Origin by Electrical Conductivity and Phenolic and Sugar Spectra. J. Agric. Food Chem. 2021;69:1329–1347. doi: 10.1021/acs.jafc.0c05311. PubMed DOI
Bertoncelj J., Polak T., Kropf U., Korošec M., Golob T. LC-DAD-ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chem. 2011;127:296–302. doi: 10.1016/j.foodchem.2011.01.003. DOI
Kato Y., Fujinaka R., Ishisaka A., Nitta Y., Kitamoto N., Takimoto Y. Plausible authentication of manuka honey and related products by measuring leptosperin with methyl syringate. J. Agric. Food Chem. 2014;62:6400–6407. doi: 10.1021/jf501475h. PubMed DOI
Mannina L., Sobolev A.P., Di Lorenzo A., Vista S., Tenore G.C., Daglia M. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula) J. Agric. Food Chem. 2015;63:5864–5874. doi: 10.1021/jf506192s. PubMed DOI
Burns D.T., Dillon A., Warren J., Walker M.J. A Critical Review of the Factors Available for the Identification and Determination of Mānuka Honey. Food Anal. Methods. 2018;11:1561–1567. doi: 10.1007/s12161-018-1154-9. DOI
Jonathan Chessum K., Chen T., Hamid N., Kam R. A comprehensive chemical analysis of New Zealand honeydew honey. Food Res. Int. 2022:111436. doi: 10.1016/j.foodres.2022.111436. PubMed DOI
Stompor M. A Review on Sources and Pharmacological Aspects of Sakuranetin. Nutrients. 2020;12:513. doi: 10.3390/nu12020513. PubMed DOI PMC
Ciucure C.T., Geană E. Phenolic compounds profile and biochemical properties of honeys in relationship to the honey floral sources. Phytochem. Anal. 2019;30:481–492. doi: 10.1002/pca.2831. PubMed DOI
Tuberoso C.I.G., Jerković I., Bifulco E., Marijanovic Z., Congiu F., Bubalo D. Riboflavin and lumichrome in Dalmatian sage honey and other unifloral honeys determined by LC–DAD technique. Food Chem. 2012;135:1985–1990. doi: 10.1016/j.foodchem.2012.06.096. PubMed DOI
Escuredo O., Silva L.R., Valentão P., Seijo M.C., Andrade P.B. Assessing Rubus honey value: Pollen and phenolic compounds content and antibacterial capacity. Food Chem. 2012;130:671–678. doi: 10.1016/j.foodchem.2011.07.107. DOI
Ouchemoukh S., Amessis-Ouchemoukh N., Gómez-Romero M., Aboud F., Giuseppe A., Fernández-Gutiérrez A., Segura-Carretero A. Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT-Food Sci. Technol. 2017;85:460–469. doi: 10.1016/j.lwt.2016.11.084. DOI
Tolba M.F., Azab S.S., Khalifa A.E., Abdel-Rahman S.Z., Abdel-Naim A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: A review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life. 2013;65:699–709. doi: 10.1002/iub.1189. PubMed DOI
Soares S., Amaral J.S., Oliveira M.B.P.P., Mafra I. A comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017;16:1072–1100. doi: 10.1111/1541-4337.12278. PubMed DOI
Gašić U.M., Milojković-Opsenica D.M., Tešić Ž.L. Polyphenols as possible markers of botanical origin of honey. J. AOAC Int. 2017;100:852–861. doi: 10.5740/jaoacint.17-0144. PubMed DOI
Bridi R., Montenegro G. The value of chilean honey: Floral origin related to their antioxidant and antibacterial activities. Honey Anal. 2017:63–78.
Kaškoniene V., Venskutonis P.R. Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Compr. Rev. Food Sci. Food Saf. 2010;9:620–634. doi: 10.1111/j.1541-4337.2010.00130.x. PubMed DOI
Aalizadeh R., Nika M.C., Thomaidis N.S. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J. Hazard. Mater. 2019;363:277–285. doi: 10.1016/j.jhazmat.2018.09.047. PubMed DOI
Seraglio S.K.T., Schulz M., Brugnerotto P., Silva B., Gonzaga L.V., Fett R., Costa A.C.O. Quality, composition and health-protective properties of citrus honey: A review. Food Res. Int. 2021;143:110268. doi: 10.1016/j.foodres.2021.110268. PubMed DOI
de Melo F.H.C., Menezes F.N.D.D., de Sousa J.M.B., dos Santos Lima M., da Silva Campelo Borges G., de Souza E.L., Magnani M. Prebiotic activity of monofloral honeys produced by stingless bees in the semi-arid region of Brazilian Northeastern toward Lactobacillus acidophilus LA-05 and Bifidobacterium lactis BB-12. Food Res. Int. 2020;128:108809. doi: 10.1016/j.foodres.2019.108809. PubMed DOI
Jerković I., Marijanović Z., Tuberoso C.I.G., Bubalo D., Kezić N. Molecular diversity of volatile compounds in rare willow (Salix spp.) honeydew honey: Identification of chemical biomarkers. Mol. Divers. 2010;14:237–248. doi: 10.1007/s11030-009-9164-6. PubMed DOI
Floris I., Pusceddu M., Satta A. The Sardinian Bitter Honey: From Ancient Healing Use to Recent Findings. Antioxidants. 2021;10:506. doi: 10.3390/antiox10040506. PubMed DOI PMC
Campillo N., Viñas P., Férez-Melgarejo G., Hernández-Córdoba M. Dispersive liquid-liquid microextraction for the determination of flavonoid aglycone compounds in honey using liquid chromatography with diode array detection and time-of-flight mass spectrometry. Talanta. 2015;131:185–191. doi: 10.1016/j.talanta.2014.07.083. PubMed DOI
Gośliński M., Nowak D., Szwengiel A. Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants. 2021;10:530. doi: 10.3390/antiox10040530. PubMed DOI PMC
Smith C.A., O’Maille G., Want E.J., Qin C., Trauger S.A., Brandon T.R., Custodio D.E., Abagyan R., Siuzdak G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005;27:747–751. doi: 10.1097/01.ftd.0000179845.53213.39. PubMed DOI
Wolf S., Schmidt S., Müller-Hannemann M., Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010;11:1–12. doi: 10.1186/1471-2105-11-148. PubMed DOI PMC
Malm L., Palm E., Souihi A., Plassmann M., Liigand J., Kruve A. Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS. Molecules. 2021;26:3524. doi: 10.3390/molecules26123524. PubMed DOI PMC
Olmo-García L., Wendt K., Kessler N., Bajoub A., Fernández-Gutiérrez A., Baessmann C., Carrasco-Pancorbo A. Exploring the Capability of LC-MS and GC-MS Multi-Class Methods to Discriminate Virgin Olive Oils from Different Geographical Indications and to Identify Potential Origin Markers. Eur. J. Lipid Sci. Technol. 2019;121:1800336. doi: 10.1002/ejlt.201800336. DOI