Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CDA 13-017
HSRD VA - United States
P 24743
Austrian Science Fund FWF - Austria
PubMed
28145450
PubMed Central
PMC5286520
DOI
10.1038/srep41002
PII: srep41002
Knihovny.cz E-zdroje
- MeSH
- antagonisté antidiuretického hormonu izolace a purifikace metabolismus MeSH
- Formicidae MeSH
- lidé MeSH
- mutační analýza DNA MeSH
- neuropeptidy genetika izolace a purifikace metabolismus MeSH
- receptory vasopresinů agonisté MeSH
- rekombinantní proteiny genetika izolace a purifikace metabolismus MeSH
- substituce aminokyselin MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antagonisté antidiuretického hormonu MeSH
- neuropeptidy MeSH
- receptory vasopresinů MeSH
- rekombinantní proteiny MeSH
Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.
Institute for Molecular Bioscience The University of Queensland QLD 4072 Brisbane Australia
IST Austria Am Campus 1 3400 Klosterneuburg Austria
School of Biomedical Sciences The University of Queensland QLD 4072 Brisbane Australia
Zobrazit více v PubMed
Lander E. S. et al.. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). PubMed
Fredriksson R., Lagerstrom M. C., Lundin L. G. & Schioth H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003). PubMed
Pierce K. L., Premont R. T. & Lefkowitz R. J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002). PubMed
Rosenbaum D. M., Rasmussen S. G. F. & Kobilka B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009). PubMed PMC
Stevens R. C. et al.. The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat. Rev. Drug Discov. 12, 25–34 (2013). PubMed PMC
Hill S. J. G-protein-coupled receptors: past, present and future. Br. J. Pharmacol. 147 Suppl 1, S27–37 (2006). PubMed PMC
Gruber C. W., Muttenthaler M. & Freissmuth M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr. Pharm. Des. 16, 3071–3088 (2010). PubMed PMC
Palczewski K. G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75, 743–767 (2006). PubMed PMC
Gruber C. W., Koehbach J. & Muttenthaler M. Exploring bioactive peptides from natural sources for oxytocin and vasopressin drug discovery. Future Med. Chem. 4, 1791–1798 (2012). PubMed PMC
Manning M. et al.. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J. Neuroendocrinol. 24, 609–628 (2012). PubMed PMC
Landgraf R. Neuropeptides in anxiety modulation. Handb. Exp. Pharmacol. 335–369 (2005). PubMed
Meyer-Lindenberg A., Domes G., Kirsch P. & Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011). PubMed
Manning M. & Sawyer W. H. Design, synthesis and some uses of receptor-specific agonists and antagonists of vasopressin and oxytocin. J Recept Res 13, 195–214 (1993). PubMed
Arrowsmith S. & Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J. Neuroendocrinol. 26, 356–369 (2014). PubMed
Landgraf R. The involvement of the vasopressin system in stress-related disorders. CNS Neurol. Disord. Drug Targets 5, 167–179 (2006). PubMed
Wersinger S. R., Ginns E. I., O’Carroll A. M., Lolait S. J. & Young W. S. 3rd. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatry 7, 975–984 (2002). PubMed
Alescio-Lautier B. & Soumireu-Mourat B. Role of vasopressin in learning and memory in the hippocampus. Prog. Brain Res. 119, 501–521 (1998). PubMed
Kirsch P. et al.. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25, 11489–11493 (2005). PubMed PMC
Gruber C. W. Physiology of invertebrate oxytocin and vasopressin neuropeptides. Exp. Physiol. 99, 55–61 (2014). PubMed PMC
Hoyle C. H. Neuropeptide families and their receptors: evolutionary perspectives. Brain Res. 848, 1–25 (1999). PubMed
Gruber C. W. & Muttenthaler M. Discovery of defense- and neuropeptides in social ants by genome-mining. PLoS One 7, e32559 (2012). PubMed PMC
Proux J. P. et al.. Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria. Biochem. Biophys. Res. Commun. 149, 180–186 (1987). PubMed
Barberis C., Mouillac B. & Durroux T. Structural bases of vasopressin/oxytocin receptor function. J. Endocrinol. 156, 223–229 (1998). PubMed
Stafflinger E. et al.. Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proc. Natl. Acad. Sci. USA. 105, 3262–3267 (2008). PubMed PMC
Chini B. et al.. Identification of a single residue responsible for agonist selectivity in the oxytocin-vasopressin receptors. Ann. N. Y. Acad. Sci. 812, 218–221 (1997). PubMed
Slusarz M. J., Gieldon A., Slusarz R. & Ciarkowski J. Analysis of interactions responsible for vasopressin binding to human neurohypophyseal hormone receptors-molecular dynamics study of the activated receptor-vasopressin-G(alpha) systems. J. Pept. Sci. 12, 180–189 (2006). PubMed
Rodrigo J. et al.. Mapping the binding site of arginine vasopressin to V1a and V1b vasopressin receptors. Mol. Endocrinol. 21, 512–523 (2007). PubMed
Hruby V. J., Chow M. S. & Smith D. D. Conformational and structural considerations in oxytocin-receptor binding and biological activity. Annu. Rev. Pharmacol. Toxicol. 30, 501–534 (1990). PubMed
Muttenthaler M. et al.. Modulating oxytocin activity and plasma stability by disulfide bond engineering. J. Med. Chem. 53, 8585–8596 (2010). PubMed
Fjellestad-Paulsen A., Soderberg-Ahlm C. & Lundin S. Metabolism of vasopressin, oxytocin, and their analogues in the human gastrointestinal tract. Peptides 16, 1141–1147 (1995). PubMed
Manglik A. et al.. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012). PubMed PMC
Yin J., Mobarec J. C., Kolb P. & Rosenbaum D. M. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519, 247–250 (2015). PubMed
Isberg V. et al.. Generic GPCR residue numbers - aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22–31 (2015). PubMed PMC
Agerso H. et al.. Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br. J. Clin. Pharmacol. 58, 352–358 (2004). PubMed PMC
Koehbach J. et al.. Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proc. Natl. Acad. Sci. USA. 110, 21183–21188 (2013). PubMed PMC
Liutkevičiūtė Z. & Gruber C. W. In Molecular Neuroendocrinology: From Genome to Physiology INF Masterclass in Neuroendocrinology (eds Murphy D. & Gainer H.) Ch. 1, 3–23 (John Wiley & Sons, Ltd, 2016).
Chini B. et al.. Tyr115 is the key residue for determining agonist selectivity in the V1a vasopressin receptor. EMBO J. 14, 2176–2182 (1995). PubMed PMC
Kenakin T. Analytical pharmacology and allosterism: the importance of quantifying drug parameters in drug discovery. Drug Discov Today Technol 10, e229–235 (2013). PubMed
Davie B. J., Christopoulos A. & Scammells P. J. Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. ACS Chem Neurosci 4, 1026–1048 (2013). PubMed PMC
Jakubik J., Bacakova L., Lisa V., el-Fakahany E. E. & Tucek S. Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc Natl Acad Sci USA 93, 8705–8709 (1996). PubMed PMC
Satsu H. et al.. A sphingosine 1-phosphate receptor 2 selective allosteric agonist. Bioorg. Med. Chem. 21, 5373–5382 (2013). PubMed PMC
Riemer R. K. & Heymann M. A. Regulation of uterine smooth muscle function during gestation. Pediatr Res 44, 615–627 (1998). PubMed
Yuan W. & Lopez Bernal A. Cyclic AMP signalling pathways in the regulation of uterine relaxation. BMC Pregnancy Childbirth 7 Suppl 1, S10 (2007). PubMed PMC
Conner M. et al.. Systematic analysis of the entire second extracellular loop of the V(1a) vasopressin receptor: key residues, conserved throughout a G-protein-coupled receptor family, identified. J. Biol. Chem. 282, 17405–17412 (2007). PubMed
Huang W. et al.. Structural insights into micro-opioid receptor activation. Nature 524, 315–321 (2015). PubMed PMC
Isogai S. et al.. Backbone NMR reveals allosteric signal transduction networks in the beta1-adrenergic receptor. Nature 530, 237–241 (2016). PubMed
Chini B. & Manning M. Agonist selectivity in the oxytocin/vasopressin receptor family: new insights and challenges. Biochem. Soc. Trans. 35, 737–741 (2007). PubMed
Manning M. et al.. Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog. Brain Res. 170, 473–512 (2008). PubMed
Manning M. et al.. Carboxy terminus of vasopressin required for activity but not binding. Nature 308, 652–653 (1984). PubMed
Schmieder R. & Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011). PubMed PMC
Kopylova E., Noe L. & Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012). PubMed
Grabherr M. G. et al.. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). PubMed PMC
Parra G., Bradnam K. & Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007). PubMed
Altschul S. F., Gish W., Miller W., Myers E. W. & Lipman D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed
Larkin M. A. et al.. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007). PubMed
Katoh K. & Standley D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). PubMed PMC
Huson D. H. & Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012). PubMed
Park Y. et al.. Analysis of transcriptome data in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 380–386 (2008). PubMed PMC
Li B. et al.. Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res. 18, 113–122 (2008). PubMed PMC
Schnolzer M., Alewood P., Jones A., Alewood D. & Kent S. B. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int. J. Pept. Protein Res. 40, 180–193 (1992). PubMed
Muttenthaler M. et al.. Solving the alpha-conotoxin folding problem: efficient selenium-directed on-resin generation of more potent and stable nicotinic acetylcholine receptor antagonists. J. Am. Chem. Soc. 132, 3514–3522 (2010). PubMed
Muttenthaler M., Albericio F. & Dawson P. E. Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis. Nat. Protoc. 10, 1067–1083 (2015). PubMed
Sarantakis D., Teichman J., Lien E. L. & Fenichel R. L. A novel cyclic undecapeptide, WY-40, 770, with prolonged growth hormone release inhibiting activity. Biochem. Biophys. Res. Commun. 73, 336–342 (1976). PubMed
Cheng Y. & Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973). PubMed
Isberg V. et al.. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44, D356–364 (2016). PubMed PMC
Bernstein F. C. et al.. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem. 80, 319–324 (1977). PubMed
Magrane M. & Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011, bar009 (2011). PubMed PMC
Webb B. & Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics 47, 561–5632 (2014). PubMed
Wang C. K. et al.. Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis. ACS Chem. Biol. 9, 156–163 (2014). PubMed PMC
Luckas M. J. & Wray S. A comparison of the contractile properties of human myometrium obtained from the upper and lower uterine segments. BJOG 107, 1309–1311 (2000). PubMed
Livingstone C. D. & Barton G. J. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput. Appl. Biosci. 9, 745–756 (1993). PubMed