Activation of muscarinic acetylcholine receptors via their allosteric binding sites

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid08710935

Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation.

Zobrazit více v PubMed

J Biol Chem. 1995 Mar 31;270(13):7405-10 PubMed

FEBS Lett. 1995 Apr 24;363(3):261-3 PubMed

Biochem Soc Trans. 1995 Feb;23(1):108-11 PubMed

FASEB J. 1995 May;9(8):619-25 PubMed

Trends Pharmacol Sci. 1995 Mar;16(3):89-97 PubMed

J Biol Chem. 1995 Jun 30;270(26):15485-93 PubMed

Biochem Pharmacol. 1995 Jun 29;50(1):17-26 PubMed

J Pharmacol Exp Ther. 1995 Jul;274(1):134-42 PubMed

J Pharmacol Exp Ther. 1995 Jul;274(1):378-84 PubMed

Eur J Pharmacol. 1995 Apr 28;289(2):311-9 PubMed

Mol Pharmacol. 1995 Aug;48(2):362-78 PubMed

Trends Pharmacol Sci. 1995 Jun;16(6):188-92 PubMed

Trends Pharmacol Sci. 1995 Jun;16(6):205-12 PubMed

Trends Pharmacol Sci. 1995 Jul;16(7):232-8 PubMed

J Pharmacol Exp Ther. 1995 Sep;274(3):1077-83 PubMed

Trends Pharmacol Sci. 1995 Aug;16(8):259-60 PubMed

FEBS Lett. 1995 Dec 18;377(2):275-9 PubMed

Br J Pharmacol. 1976 Nov;58(3):323-31 PubMed

Fed Proc. 1981 Nov;40(13):2723-8 PubMed

Mol Pharmacol. 1983 May;23(3):551-7 PubMed

Mol Pharmacol. 1983 Jul;24(1):15-22 PubMed

Br J Pharmacol. 1987 Oct;92(2):327-32 PubMed

J Pharmacol Exp Ther. 1988 Nov;247(2):596-602 PubMed

Mol Pharmacol. 1989 Apr;35(4):469-76 PubMed

J Pharmacol Exp Ther. 1989 Sep;250(3):944-52 PubMed

Annu Rev Pharmacol Toxicol. 1990;30:633-73 PubMed

Mol Pharmacol. 1990 Nov;38(5):674-80 PubMed

Biochem Pharmacol. 1991 Jul 5;42(2):199-205 PubMed

Mol Pharmacol. 1991 Aug;40(2):242-7 PubMed

Biochem Pharmacol. 1991 Oct 24;42(10):1927-32 PubMed

Eur J Pharmacol. 1992 Mar 12;225(3):245-52 PubMed

Biochemistry. 1992 Nov 3;31(43):10634-42 PubMed

Mol Pharmacol. 1992 Oct;42(4):638-41 PubMed

Naunyn Schmiedebergs Arch Pharmacol. 1992 Oct;346(4):383-90 PubMed

J Pharmacol Exp Ther. 1993 Jul;266(1):237-43 PubMed

J Physiol. 1993 Feb;461:743-65 PubMed

Pharmacol Ther. 1993 Jun;58(3):319-79 PubMed

Biochemistry. 1994 Feb 1;33(4):943-51 PubMed

J Biol Chem. 1994 Apr 1;269(13):9767-73 PubMed

Mol Pharmacol. 1994 Mar;45(3):517-23 PubMed

Mol Pharmacol. 1994 Apr;45(4):709-17 PubMed

Mol Pharmacol. 1994 May;45(5):983-90 PubMed

J Neurochem. 1994 Nov;63(5):1932-40 PubMed

Mol Pharmacol. 1994 Oct;46(4):685-92 PubMed

Methods Enzymol. 1994;238:31-56 PubMed

Mol Pharmacol. 1995 Jan;47(1):88-98 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fusion with Promiscuous Gα16 Subunit Reveals Signaling Bias at Muscarinic Receptors

. 2021 Sep 18 ; 22 (18) : . [epub] 20210918

The operational model of allosteric modulation of pharmacological agonism

. 2020 Sep 02 ; 10 (1) : 14421. [epub] 20200902

Novel M2 -selective, Gi -biased agonists of muscarinic acetylcholine receptors

. 2020 May ; 177 (9) : 2073-2089. [epub] 20200215

Current Advances in Allosteric Modulation of Muscarinic Receptors

. 2020 Feb 18 ; 10 (2) : . [epub] 20200218

Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide

. 2017 Feb 01 ; 7 () : 41002. [epub] 20170201

Changes in Membrane Cholesterol Differentially Influence Preferential and Non-preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors

. 2015 Oct ; 40 (10) : 2068-77. [epub] 20140513

Subtype differences in pre-coupling of muscarinic acetylcholine receptors

. 2011 ; 6 (11) : e27732. [epub] 20111116

Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

. 2011 Mar ; 162 (5) : 1029-44.

Allosteric Modulation of Muscarinic Acetylcholine Receptors

. 2010 Aug 30 ; 3 (9) : 2838-2860. [epub] 20100830

Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors

. 2009 Dec 28 ; 9 () : 15. [epub] 20091228

Dual effects of muscarinic M(2) acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists

. 2001 Mar ; 132 (6) : 1217-28.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...