The operational model of allosteric modulation of pharmacological agonism
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
32879329
PubMed Central
PMC7468285
DOI
10.1038/s41598-020-71228-y
PII: 10.1038/s41598-020-71228-y
Knihovny.cz E-zdroje
- MeSH
- alosterická regulace MeSH
- kinetika MeSH
- lidé MeSH
- ligandy MeSH
- receptory spřažené s G-proteiny agonisté metabolismus MeSH
- synergismus léků * MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ligandy MeSH
- receptory spřažené s G-proteiny MeSH
Proper determination of agonist efficacy is indispensable in the evaluation of agonist selectivity and bias to activation of specific signalling pathways. The operational model (OM) of pharmacological agonism is a useful means for achieving this goal. Allosteric ligands bind to receptors at sites that are distinct from those of endogenous agonists that interact with the orthosteric domain on the receptor. An allosteric modulator and an orthosteric agonist bind simultaneously to the receptor to form a ternary complex, where the allosteric modulator affects the binding affinity and operational efficacy of the agonist. Allosteric modulators are an intensively studied group of receptor ligands because of their selectivity and preservation of physiological space-time pattern of the signals they modulate. We analysed the operational model of allosterically-modulated agonism (OMAM) including modulation by allosteric agonists. Similar to OM, several parameters of OMAM are inter-dependent. We derived equations describing mutual relationships among parameters of the functional response and OMAM. We present a workflow for the robust fitting of OMAM to experimental data using derived equations.
Zobrazit více v PubMed
Monod J, Changeux J, Jacob F. Allosteric proteins and cellular control systems. J. Mol. Biol. 1963;6:306–329. doi: 10.1016/S0022-2836(63)80091-1. PubMed DOI
Liu J, Nussinov R. Allostery: an overview of its history, concepts, methods, and applications. PLoS Comput. Biol. 2016;12:e1004966. doi: 10.1371/journal.pcbi.1004966. PubMed DOI PMC
Wodak SJ, et al. Allostery in its many disguises: from theory to applications. Structure. 2019;27:566–578. doi: 10.1016/j.str.2019.01.003. PubMed DOI PMC
Bhat AS, Dustin Schaeffer R, Kinch L, Medvedev KE, Grishin NV. Recent advances suggest increased influence of selective pressure in allostery. Curr. Opin. Struct. Biol. 2020;62:183–188. doi: 10.1016/j.sbi.2020.02.004. PubMed DOI PMC
Zhang Y, et al. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Curr. Opin. Struct. Biol. 2020;62:14–21. doi: 10.1016/j.sbi.2019.11.002. PubMed DOI PMC
Lazareno S, Dolezal V, Popham A, Birdsall NJM. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol. Pharmacol. 2004;65:257–266. doi: 10.1124/mol.65.1.257. PubMed DOI
De Amici M, Dallanoce C, Holzgrabe U, Tränkle C, Mohr K. Allosteric ligands for G protein-coupled receptors: a novel strategy with attractive therapeutic opportunities. Med. Res. Rev. 2010;30:463–549. doi: 10.1002/med.20166. PubMed DOI
May LT, Leach K, Sexton PM, Christopoulos A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 2007;47:1–51. doi: 10.1146/annurev.pharmtox.47.120505.105159. PubMed DOI
Foster DJ, Conn PJ. Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron. 2017;94:431–446. doi: 10.1016/j.neuron.2017.03.016. PubMed DOI PMC
Wold EA, Chen J, Cunningham KA, Zhou J. Allosteric modulation of class A GPCRs: targets, agents, and emerging concepts. J. Med. Chem. 2019;62:88–127. doi: 10.1021/acs.jmedchem.8b00875. PubMed DOI PMC
Guarnera E, Berezovsky IN. On the perturbation nature of allostery: sites, mutations, and signal modulation. Curr. Opin. Struct. Biol. 2019;56:18–27. doi: 10.1016/j.sbi.2018.10.008. PubMed DOI
Guarnera E, Berezovsky IN. Allosteric drugs and mutations: chances, challenges, and necessity. Curr. Opin. Struct. Biol. 2020;62:149–157. doi: 10.1016/j.sbi.2020.01.010. PubMed DOI
Black JW, Leff P. Operational models of pharmacological agonism. Proc. R Soc. Lond. Ser. B Biol. Sci. 1983;220:141–162. doi: 10.1098/rspb.1983.0093. PubMed DOI
Leff P, Dougall IG, Harper D. Estimation of partial agonist affinity by interaction with a full agonist: a direct operational model fitting approach. Br. J. Pharmacol. 1993;110:239–244. doi: 10.1111/j.1476-5381.1993.tb13799.x. PubMed DOI PMC
Jakubík J, et al. Applications and limitations of fitting of the operational model to determine relative efficacies of agonists. Sci. Rep. 2019;9:4637. doi: 10.1038/s41598-019-40993-w. PubMed DOI PMC
Weiss JM, Morgan PH, Lutz MW, Kenakin TP. The cubic ternary complex receptor-occupancy model I. Model description. J. Theor. Biol. 1996;178:151–167. doi: 10.1006/jtbi.1996.0014. PubMed DOI
Leach K, Sexton PM, Christopoulos A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 2007;28:382–389. doi: 10.1016/j.tips.2007.06.004. PubMed DOI
Jakubík J, Bacáková L, Lisá V, El-Fakahany EE, Tucek S. Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc. Natl. Acad. Sci. USA. 1996;93:8705–8709. doi: 10.1073/pnas.93.16.8705. PubMed DOI PMC
Langmead CJ, et al. Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol. Pharmacol. 2006;69:236–246. doi: 10.1124/mol.105.017814. PubMed DOI
Bridges TM, et al. Synthesis and SAR of analogues of the M1 allosteric agonist TBPB. Part I: exploration of alternative benzyl and privileged structure moieties. Bioorg. Med. Chem. Lett. 2008;18:5439–5442. doi: 10.1016/j.bmcl.2008.09.023. PubMed DOI PMC
Digby GJ, et al. Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models. J. Neurosci. 2012;32:8532–8544. doi: 10.1523/JNEUROSCI.0337-12.2012. PubMed DOI PMC
Noetzel MJ, et al. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol. Pharmacol. 2012;81:120–133. doi: 10.1124/mol.111.075184. PubMed DOI PMC
Koole C, et al. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) differentially regulates orthosteric but not allosteric agonist binding and function. J. Biol. Chem. 2012;287:3659–3673. doi: 10.1074/jbc.M111.309369. PubMed DOI PMC
Stanczyk MA, et al. The δ-opioid receptor positive allosteric modulator BMS 986187 is a G-protein-biased allosteric agonist. Br. J. Pharmacol. 2019;176:1649–1663. doi: 10.1111/bph.14602. PubMed DOI PMC
Weiss JM, Morgan PH, Lutz MW, Kenakin TP. The cubic ternary complex receptor-occupancy model II. Understanding apparent affinity. J. Theor. Biol. 1996;178:169–182. doi: 10.1006/jtbi.1996.0015. PubMed DOI
Weiss JM, Morgan PH, Lutz MW, Kenakin TP. The cubic ternary complex receptor-occupancy model III. Resurrecting efficacy. J. Theor. Biol. 1996;181:381–397. doi: 10.1006/jtbi.1996.0139. PubMed DOI
Jakubík J, El-Fakahany EE. Allosteric Modulation of Muscarinic Receptors. In: Myslivecek J, Jakubik J, editors. Muscarinic Receptor: From Structure to Animal Models. Totowa: Humana Press; 2016. pp. 95–130.
Ehlert FJ. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 1988;33:187–194. PubMed
Burger WAC, Sexton PM, Christopoulos A, Thal DM. Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. J. Gen. Physiol. 2018;150:1360–1372. doi: 10.1085/jgp.201711979. PubMed DOI PMC
Jakubík J, Bacáková L, El-Fakahany EE, Tucek S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 1997;52:172–179. doi: 10.1124/mol.52.1.172. PubMed DOI
Jakubík J, Randáková A, El-Fakahany EE, Doležal V. Analysis of equilibrium binding of an orthosteric tracer and two allosteric modulators. PLoS ONE. 2019;14:e0214255. doi: 10.1371/journal.pone.0214255. PubMed DOI PMC
Jakubík J, Janíčková H, El-Fakahany EE, Doležal V. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy. Br. J. Pharmacol. 2011;162:1029–1044. doi: 10.1111/j.1476-5381.2010.01081.x. PubMed DOI PMC
El-Fakahany EE, Jakubik J. Radioligand binding at muscarinic receptors. In: Myslivecek J, Jakubik J, editors. Muscarinic Receptor: From Structure to Animal Models. Totowa: Humana Press; 2016. pp. 37–68.
Allosteric Modulation of GPCRs of Class A by Cholesterol