A critical re-evaluation of the slope factor of the operational model of agonism: When to exponentiate operational efficacy

. 2023 Oct 16 ; 13 (1) : 17587. [epub] 20231016

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37845324
Odkazy

PubMed 37845324
PubMed Central PMC10579308
DOI 10.1038/s41598-023-45004-7
PII: 10.1038/s41598-023-45004-7
Knihovny.cz E-zdroje

Agonist efficacy denoting the "strength" of agonist action is a cornerstone in the proper assessment of agonist selectivity and signalling bias. The simulation models are very accurate but complex and hard to fit experimental data. The parsimonious operational model of agonism (OMA) has become successful in the determination of agonist efficacies and ranking them. In 1983, Black and Leff introduced the slope factor to the OMA to make it more flexible and allow for fitting steep as well as flat concentration-response curves. First, we performed a functional analysis to indicate the potential pitfalls of the OMA. Namely, exponentiation of operational efficacy may break relationships among the OMA parameters. The fitting of the Black & Leff equation to the theoretical curves of several models of functional responses and the experimental data confirmed the fickleness of the exponentiation of operational efficacy affecting estimates of operational efficacy as well as other OMA parameters. In contrast, fitting The OMA based on the Hill equation to the same data led to better estimates of model parameters. In conclusion, Hill equation-based OMA should be preferred over the Black & Leff equation when functional-response curves differ in the slope factor. Otherwise, the Black & Leff equation should be used with extreme caution acknowledging potential pitfalls.

Zobrazit více v PubMed

Stephenson RP. A modification of receptor theory. Br. J. Pharmacol. Chemother. 1956;11:379–393. doi: 10.1111/j.1476-5381.1956.tb00006.x. PubMed DOI PMC

Black JW, Leff P. Operational models of pharmacological agonism. Proc. R. Soc. London. Ser. B Biol. Sci. 1983;220:141–162. PubMed

Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 2012;3:193–203. doi: 10.1021/cn200111m. PubMed DOI PMC

Kenakin T, Christopoulos A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 2013;12:205–216. doi: 10.1038/nrd3954. PubMed DOI

Kenakin, T. P. Agonists: The Measurement of Affinity and Efficacy in Functional Assays. In A Pharmacology Primer 85–117 (Academic Press, 2014). doi:10.1016/b978-0-12-407663-1.00005-3.

Jakubík J, et al. Applications and limitations of fitting of the operational model to determine relative efficacies of agonists. Sci. Rep. 2019;9:4637. doi: 10.1038/s41598-019-40993-w. PubMed DOI PMC

Hall DA, Giraldo J. A method for the quantification of biased signalling at constitutively active receptors. Br. J. Pharmacol. 2018;175:2046–2062. doi: 10.1111/bph.14190. PubMed DOI PMC

Onaran HO, et al. Systematic errors in detecting biased agonism: Analysis of current methods and development of a new model-free approach. Sci. Rep. 2017;7:44247. doi: 10.1038/srep44247. PubMed DOI PMC

Onaran HO, Costa T. Conceptual and experimental issues in biased agonism. Cell. Signal. 2021;82:109955. doi: 10.1016/j.cellsig.2021.109955. PubMed DOI

Black JW, Leff P, Shankley NP, Wood J. An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br. J. Pharmacol. 1985;84:561–571. doi: 10.1111/j.1476-5381.1985.tb12941.x. PubMed DOI PMC

Hill AV. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J. Physiol. 1910;40:i–vii.

Gesztelyi R, et al. The Hill equation and the origin of quantitative pharmacology. Arch. Hist. Exact Sci. 2012;66:427–438. doi: 10.1007/s00407-012-0098-5. DOI

Clark AJ. The antagonism of acetyl choline by atropine. J. Physiol. 1926;61:547–556. doi: 10.1113/jphysiol.1926.sp002315. PubMed DOI PMC

Furchgott RF. The use of β-haloalkylamines in the diferentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv. Drug Res. 1966;3:21–55.

Weiss JN. The Hill equation revisited: Uses and misuses. FASEB J. 1997;11:835–841. doi: 10.1096/fasebj.11.11.9285481. PubMed DOI

Roche D, van der Graaf PH, Giraldo J. Have many estimates of efficacy and affinity been misled? Revisiting the operational model of agonism. Drug Discov. Today. 2016;21:1735–1739. doi: 10.1016/j.drudis.2016.06.019. PubMed DOI

Jakubík J, Randáková A, Chetverikov N, El-Fakahany EE, Doležal V. The operational model of allosteric modulation of pharmacological agonism. Sci. Rep. 2020;10:14421. doi: 10.1038/s41598-020-71228-y. PubMed DOI PMC

Jakubík J, Randáková A. Insights into the operational model of agonism of receptor dimers. Exp. Opin. Drug Discov. 2022;17:1181–1191. doi: 10.1080/17460441.2023.2147502. PubMed DOI

Gregory KJ, Giraldo J, Diao J, Christopoulos A, Leach K. Evaluation of operational models of agonism and allosterism at receptors with multiple orthosteric binding sites. Mol. Pharmacol. 2020;97:35–45. doi: 10.1124/mol.119.118091. PubMed DOI

Strelow, J. et al. Mechanism of Action Assays for Enzymes. Assay Guidance Manual (2004).

Ogawa H, Sato M, Yamashita S. Gustatory impulse discharges in response to saccharin in rats and hamsters. J. Physiol. 1969;204:311–329. doi: 10.1113/jphysiol.1969.sp008915. PubMed DOI PMC

Alberts P, Bartfai T, Stjärne L. Site(s) and ionic basis of alpha-autoinhibition and facilitation of "3H’noradrenaline secretion in guinea-pig vas deferens. J. Physiol. 1981;312:297–334. doi: 10.1113/jphysiol.1981.sp013630. PubMed DOI PMC

Li S-J, et al. Cooperative autoinhibition and multi-level activation mechanisms of calcineurin. Cell Res. 2016;26:336–349. doi: 10.1038/cr.2016.14. PubMed DOI PMC

Del Vecchio, D. & Murray, R. M. Biomolecular Feedback Systems. Biomolecular Feedback Systems (Princeton University Press, 2014). doi:10.23943/princeton/9780691161532.001.0001.

Black JB, Premont RT, Daaka Y. Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Semin. Cell Dev. Biol. 2016;50:95–104. doi: 10.1016/j.semcdb.2015.12.015. PubMed DOI PMC

Gómez-Schiavon M, El-Samad H. CoRa-A general approach for quantifying biological feedback control. Proc. Natl. Acad. Sci. U. S. A. 2022;119:e2206825119. doi: 10.1073/pnas.2206825119. PubMed DOI PMC

Lefkowitz RJ. A brief history of G-protein coupled receptors (Nobel Lecture) Angew. Chem. Int. Ed. Engl. 2013;52:6366–6378. doi: 10.1002/anie.201301924. PubMed DOI

Christopoulos A, El-Fakahany EE. Qualitative and quantitative assessment of relative agonist efficacy. Biochem. Pharmacol. 1999;58:735–748. doi: 10.1016/S0006-2952(99)00087-8. PubMed DOI

Kenakin TP. Biased signalling and allosteric machines: New vistas and challenges for drug discovery. Br. J. Pharmacol. 2012;165:1659–1669. doi: 10.1111/j.1476-5381.2011.01749.x. PubMed DOI PMC

Keov P, et al. Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor. J. Biol. Chem. 2014;289:23817–23837. doi: 10.1074/jbc.M114.582874. PubMed DOI PMC

Luttrell LM, Maudsley S, Bohn LM. Fulfilling the promise of ‘biased’ g protein-coupled receptor agonism. Mol. Pharmacol. 2015;88:579–588. doi: 10.1124/mol.115.099630. PubMed DOI PMC

Stott LA, Hall DA, Holliday ND. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data. Biochem. Pharmacol. 2016;101:1–12. doi: 10.1016/j.bcp.2015.10.011. PubMed DOI

Burgueño J, et al. A complementary scale of biased agonism for agonists with differing maximal responses. Sci. Rep. 2017;7:15389. doi: 10.1038/s41598-017-15258-z. PubMed DOI PMC

Kenakin T. A scale of agonism and allosteric modulation for assessment of selectivity, bias, and receptor mutation. Mol. Pharmacol. 2017;92:414–424. doi: 10.1124/mol.117.108787. PubMed DOI

Ehlert FJ, Griffin MT, Sawyer GW, Bailon R. A simple method for estimation of agonist activity at receptor subtypes: Comparison of native and cloned M3 muscarinic receptors in guinea pig ileum and transfected cells. J. Pharmacol. Exp. Ther. 1999;289:981–992. PubMed

Griffin MT, Figueroa KW, Liller S, Ehlert FJ. Estimation of agonist activity at G protein-coupled receptors: Analysis of M2 muscarinic receptor signaling through Gi/o, Gs, and G15. J. Pharmacol. Exp. Ther. 2007;321:1193–1207. doi: 10.1124/jpet.107.120857. PubMed DOI

Chabre M, Deterre P, Antonny B. The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends Pharmacol. Sci. 2009;30:182–187. doi: 10.1016/j.tips.2009.01.003. PubMed DOI

Park PSH, Wells JW. Oligomeric potential of the M2 muscarinic cholinergic receptor. J. Neurochem. 2004;90:537–548. doi: 10.1111/j.1471-4159.2004.02536.x. PubMed DOI

Hu J, et al. Structural aspects of M3 muscarinic acetylcholine receptor dimer formation and activation. FASEB J. 2012;26:604–616. doi: 10.1096/fj.11-191510. PubMed DOI PMC

Redka DS, et al. Coupling of G proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor. J. Biol. Chem. 2014;289:24347–24365. doi: 10.1074/jbc.M114.559294. PubMed DOI PMC

Liste MJV, et al. The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor. Mol. Pharmacol. 2015;87:936–953. doi: 10.1124/mol.114.096925. PubMed DOI

Anderson D, et al. Rapid generation of recombinant baculovirus and expression of foreign genes using the BAC-to-BAC Baculovirus expression system. Focus Madison. 1995;17:53–58.

Randáková A, et al. Agonist-specific conformations of the M2 muscarinic acetylcholine receptor assessed by molecular dynamics. J. Chem. Inf. Model. 2020;60:2325–2338. doi: 10.1021/acs.jcim.0c00041. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...