Applications and limitations of fitting of the operational model to determine relative efficacies of agonists

. 2019 Mar 15 ; 9 (1) : 4637. [epub] 20190315

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30874590
Odkazy

PubMed 30874590
PubMed Central PMC6420642
DOI 10.1038/s41598-019-40993-w
PII: 10.1038/s41598-019-40993-w
Knihovny.cz E-zdroje

Proper determination of agonist efficacy is essential in the assessment of agonist selectivity and signalling bias. Agonist efficacy is a relative term that is dependent on the system in which it is measured, especially being dependent on receptor expression level. The operational model (OM) of functional receptor agonism is a useful means for the determination of agonist functional efficacy using the maximal response to agonist and ratio of agonist functional potency to its equilibrium dissociation constant (KA) at the active state of the receptor. However, the functional efficacy parameter τ is inter-dependent on two other parameters of OM; agonist's KA and the highest response that could be evoked in the system by any stimulus (EMAX). Thus, fitting of OM to functional response data is a tricky process. In this work we analyse pitfalls of fitting OM to experimental data and propose a rigorous fitting procedure where KA and EMAX are derived from half-efficient concentration of agonist and apparent maximal responses obtained from a series of functional response curves. Subsequently, OM with fixed KA and EMAX is fitted to functional response data to obtain τ. The procedure was verified at M2 and M4 muscarinic receptors fused with the G15 G-protein α-subunit. The procedure, however, is applicable to any receptor-effector system.

Zobrazit více v PubMed

Black JW, Leff P. Operational models of pharmacological agonism. Proc. R. Soc. London. Ser. B, Biol. Sci. 1983;220:141–62. PubMed

Leff P, Dougall IG, Harper D. Estimation of partial agonist affinity by interaction with a full agonist: a direct operational model fitting approach. Br. J. Pharmacol. 1993;110:239–244. doi: 10.1111/j.1476-5381.1993.tb13799.x. PubMed DOI PMC

Kenakin T. Efficacy as a Vector: the Relative Prevalence and Paucity of Inverse Agonism. Mol. Pharmacol. 2004;65:2–11. doi: 10.1124/mol.65.1.2. PubMed DOI

Kenakin T. New concepts in pharmacological efficacy at 7TM receptors: IUPHAR Review 2. Br. J. Pharmacol. 2013;168:554–575. doi: 10.1111/j.1476-5381.2012.02223.x. PubMed DOI PMC

Kenakin T. Agonist-receptor efficacy I: mechanisms of efficacy and receptor promiscuity. Trends Pharmacol. Sci. 1995;16:188–192. doi: 10.1016/S0165-6147(00)89020-3. PubMed DOI

Frigyesi A, Hössjer O. Estimating the parameters of the operational model of pharmacological agonism. Stat. Med. 2006;25:2932–2945. doi: 10.1002/sim.2448. PubMed DOI

Christopoulos A. Assessing the distribution of parameters in models of ligand-receptor interaction: To log or not to log. Trends Pharmacol. Sci. 1998;19:351–357. doi: 10.1016/S0165-6147(98)01240-1. PubMed DOI

Boulos JF, Jakubik J, Boulos JM, Randakova A, Momirov J. Synthesis of novel and functionally selective non-competitive muscarinic antagonists as chemical probes. Chem. Biol. Drug Des. 2018;91:93–104. doi: 10.1111/cbdd.13059. PubMed DOI

Offermanns S, Simon MI. G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J Biol Chem. 1995;270:15175–15180. doi: 10.1074/jbc.270.25.15175. PubMed DOI

Ehlert FJ. Analysis of allosterism in functional assays. J.Pharmacol.Exp.Ther. 2005;315:740–754. doi: 10.1124/jpet.105.090886. PubMed DOI

Sawyer GW, Ehlert FJ, Shults CA. Cysteine pairs in the third intracellular loop of the muscarinic m1 acetylcholine receptor play a role in agonist-induced internalization. J Pharmacol Exp Ther. 2008;324:196–205. doi: 10.1124/jpet.107.123695. PubMed DOI

Smith NJ, et al. Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric Modulator. Moleuclar Pharmacol. 2011;80:163–173. doi: 10.1124/mol.110.070789. PubMed DOI PMC

Abdul-Ridha A, et al. Mechanistic Insights into Allosteric Structure-Function Relationships at the M 1 Muscarinic Acetylcholine Receptor. J. Biol. Chem. 2014;289:33701–33711. doi: 10.1074/jbc.M114.604967. PubMed DOI PMC

Abdul-Ridha A, et al. Molecular Determinants of Allosteric Modulation at the M 1 Muscarinic Acetylcholine Receptor. J. Biol. Chem. 2014;289:6067–6079. doi: 10.1074/jbc.M113.539080. PubMed DOI PMC

Kenakin T, Christopoulos A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov. 2013;12:205–216. doi: 10.1038/nrd3954. PubMed DOI

van der Westhuizen ET, Breton B, Christopoulos A, Bouvier M. Quantification of Ligand Bias for Clinically Relevant 2-Adrenergic Receptor Ligands: Implications for Drug Taxonomy. Mol. Pharmacol. 2014;85:492–509. doi: 10.1124/mol.113.088880. PubMed DOI

Thompson GL, et al. Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochem. Pharmacol. 2016;113:70–87. doi: 10.1016/j.bcp.2016.05.014. PubMed DOI

Kenakin T. Theoretical aspects of GPCR-ligand complex pharmacology. Chem. Rev. 2017;117:4–20. doi: 10.1021/acs.chemrev.5b00561. PubMed DOI

Bedinger DH, Goldfine ID, Corbin JA, Roell MK, Adams SH. Differential pathway coupling of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody. J. Pharmacol. Exp. Ther. 2015;353:35–43. doi: 10.1124/jpet.114.221309. PubMed DOI

Jakubík J, Janíčková H, El-Fakahany EE, Doležal V. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy. Br J Pharmacol. 2011;162:1029–1044. doi: 10.1111/j.1476-5381.2010.01081.x. PubMed DOI PMC

Waelbroeck M, Robberecht P, Chatelain P, Christophe J. Rat cardiac muscarinic receptors. I. Effects of guanine nucleotides on high- and low-affinity binding sites. Mol. Pharmacol. 1982;21:581 LP–588. PubMed

DeVree BT, et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature. 2016;535:182–6. doi: 10.1038/nature18324. PubMed DOI PMC

El-Fakahany, E. E. & Jakubik, J. In Muscarinic Receptor: From Structure to Animal Models (eds Myslivecek, J. & Jakubik, J.) 37–68, 10.1007/978-1-4939-2858-3_3 (Springer New York, 2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...