Novel M2 -selective, Gi -biased agonists of muscarinic acetylcholine receptors

. 2020 May ; 177 (9) : 2073-2089. [epub] 20200215

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31910288

Grantová podpora
Barry University - International
17-16182S Grant Agency of the Czech Republic - International
RVO:67985823 Czech Academy of Sciences - International

BACKGROUND AND PURPOSE: More than 30% of currently marketed medications act via GPCRs. Thus, GPCRs represent one of the most important pharmacotherapeutic targets. In contrast to traditional agonists activating multiple signalling pathways, agonists activating a single signalling pathway represent a new generation of drugs with increased specificity and fewer adverse effects. EXPERIMENTAL APPROACH: We have synthesized novel agonists of muscarinic ACh receptors and tested their binding and function (on levels of cAMP and inositol phosphates) in CHO cells expressing individual subtypes of muscarinic receptors, primary cultures of rat aortic smooth muscle cells and suspensions of digested native tissues from rats. Binding of the novel compounds to M2 receptors was modelled in silico. KEY RESULTS: Two of the tested new compounds (1-(thiophen-2-ylmethyl)-3,6-dihydro-2H-pyridinium and 1-methyl-1-(thiophen-2-ylmethyl)-3,6-dihydro-2H-pyridinium) only inhibited cAMP synthesis in CHO cells, primary cultures, and native tissues, with selectivity for M2 muscarinic receptors and displaying bias towards the Gi signalling pathway at all subtypes of muscarinic receptors. Molecular modelling revealed interactions with the orthosteric binding site in a way specific for a given agonist followed by agonist-specific changes in the conformation of the receptor. CONCLUSIONS AND IMPLICATIONS: The identified compounds may serve as lead structures in the search for novel non-steroidal and non-opioid analgesics acting via M2 and M4 muscarinic receptors with reduced side effects associated with activation of the phospholipase C signalling pathway.

Zobrazit více v PubMed

Alexander, S. P. H. , Christopoulos, A. , Davenport, A. P. , Kelly, E. , Mathie, A. , Peters, J. A. , … CGTP Collaborators (2019). The Concise Guide To PHARMACOLOGY 2019/20: G protein‐coupled receptors. British Journal of Pharmacology, 176, S21–S141. 10.1111/bph.14748 PubMed DOI PMC

Alexander, S. P. H. , Fabbro, D. , Kelly, E. , Mathie, A. , Peters, J. A. , Veale, E. L. , … CGTP Collaborators (2019). The Concise Guide To PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 176, S297–S396. 10.1111/bph.14752 PubMed DOI PMC

Alexander, S. P. H. , Mathie, A. , Peters, J. A. , Veale, E. L. , Striessnig, J. , Kelly, E. , … CGTP Collaborators (2019). The Concise Guide To PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 176, S142–S228. 10.1111/bph.14749 PubMed DOI PMC

Bacáková, L. , Lisá, V. , Pellicciari, C. , Mares, V. , Bottone, M. G. , & Kocourek, F. (1997). Sex related differences in the adhesion, migration, and growth of rat aortic smooth muscle cells in culture. In Vitro Cellular & Developmental Biology. Animal, 33, 410–413. 10.1007/s11626-997-0055-9 PubMed DOI

Ballesteros, J. A. , & Weinstein, H. (1995). Integrated methods for the construction of three‐dimensional models and computational probing of structure‐function relations in G protein‐coupled receptors. Methods Neuroscience, 25, 366–428.

Bhattacharya, S. , & Vaidehi, N. (2014). Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Biophysical Journal, 107, 422–434. 10.1016/j.bpj.2014.06.015 PubMed DOI PMC

Black, J. W. , & Leff, P. (1983). Operational models of pharmacological agonism. Proceedings of the Royal society of London. Series B. Biological sciences, 220, 141–162. PubMed

Bologna, Z. , Teoh, J. P. , Bayoumi, A. S. , Tang, Y. , & Kim, I. M. (2017). Biased G protein‐coupled receptor signaling: New player in modulating physiology and pathology. Biomolecules & Therapeutics, 25, 12–25. 10.4062/biomolther.2016.165 PubMed DOI PMC

Boulos, J. , Jakubík, J. , Randáková, A. , & Avila, C. (2013). Synthesis of N‐substituted piperidine salts as potential muscarinic ligands for Alzheimer's applications. Journal of Heterocyclic Chemistry, 50, 1363–1367.

Boulos, J. F. , Jakubik, J. , Boulos, J. M. , Randakova, A. , & Momirov, J. (2017). Synthesis of novel and functionally selective non‐competitive muscarinic antagonists as chemical probes. Chemical Biology & Drug Design, 1–12. PubMed

Chen, S. R. , & Pan, H. L. (2004). Activation of muscarinic receptors inhibits spinal dorsal horn projection neurons: Role of GABAB receptors. Neuroscience, 125, 141–148. 10.1016/j.neuroscience.2004.01.015 PubMed DOI

Curtis, M. J. , Alexander, S. , Cirino, G. , Docherty, J. R. , George, C. H. , Giembycz, M. A. , … Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175, 987–993. 10.1111/bph.14153 PubMed DOI PMC

De Angelis, F. , & Maria Tata, A. (2016). Analgesic effects mediated by muscarinic receptors: Mechanisms and pharmacological approaches. Central Nervous System Agents in Medicinal Chemistry, 16, 218–226. 10.2174/1871524916666160302103033 PubMed DOI

Deupi, X. , & Kobilka, B. (2007). Activation of G protein‐coupled receptors. Advances in Protein Chemistry, 74, 137–166. 10.1016/S0065-3233(07)74004-4 PubMed DOI

DeWire, S. M. , Yamashita, D. S. , Rominger, D. H. , Liu, G. , Cowan, C. L. , Graczyk, T. M. , … Violin, J. D. (2013). A G protein‐biased ligand at the μ‐opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. The Journal of Pharmacology and Experimental Therapeutics, 344, 708–717. 10.1124/jpet.112.201616 PubMed DOI

Duttaroy, A. , Gomeza, J. , Gan, J.‐W. , Siddiqui, N. , Basile, A. S. , Harman, W. D. , … Wess, J. (2002). Evaluation of muscarinic agonist‐induced analgesia in muscarinic acetylcholine receptor knockout mice. Molecular Pharmacology, 62, 1084–1093. 10.1124/mol.62.5.1084 PubMed DOI

Eglen, R. M. (2012). Overview of muscarinic receptor subtypes In Fryer A. D., Christopoulos A., & Nathanson N. M. (Eds.), In Handb Exp Pharmacol (pp. 3–28). Springer. PubMed

Ehlert, F. J. (2003). Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sciences, 74, 355–366. 10.1016/j.lfs.2003.09.023 PubMed DOI

El‐Fakahany, E. E. , & Jakubik, J. (2016). Radioligand binding at muscarinic receptors In Myslivecek J., & Jakubik J. (Eds.), Springer Science + Business Media LLCMuscarinic receptor: From structure to animal models (pp. 37–68). New York: Humana Press.

Fish, I. , Stößel, A. , Eitel, K. , Valant, C. , Albold, S. , Huebner, H. , … Gmeiner, P. (2017). Structure‐based design and discovery of new M2 receptor agonists. Journal of Medicinal Chemistry, 60, 9239–9250. 10.1021/acs.jmedchem.7b01113 PubMed DOI PMC

Glukhova, A. , Draper‐Joyce, C. J. , Sunahara, R. K. , Christopoulos, A. , Wootten, D. , & Sexton, P. M. (2018). Rules of engagement: GPCRs and G proteins. ACS Pharmacol. Transl. Sci., 1, 73–83. PubMed PMC

Griffin, M. T. , Figueroa, K. W. , Liller, S. , & Ehlert, F. J. (2007). Estimation of agonist activity at G protein‐coupled receptors: Analysis of M2 muscarinic receptor signaling through Gi/o, Gs, and G15. The Journal of Pharmacology and Experimental Therapeutics, 321, 1193–1207. 10.1124/jpet.107.120857 PubMed DOI

Haga, K. , Kruse, A. C. , Asada, H. , Yurugi‐Kobayashi, T. , Shiroishi, M. , Zhang, C. , … Kobayashi, T. (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature, 482, 547–551. 10.1038/nature10753 PubMed DOI PMC

Harding, S. D. , Sharman, J. L. , Faccenda, E. , Southan, C. , Pawson, A. J. , Ireland, S. , … NC‐IUPHAR (2018). The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 46, D1091–D1106. 10.1093/nar/gkx1121 PubMed DOI PMC

Hermans, E. (2003). Biochemical and pharmacological control of the multiplicity of coupling at G‐protein‐coupled receptors. Pharmacology & Therapeutics, 99, 25–44. 10.1016/s0163-7258(03)00051-2 PubMed DOI

Jakubík, J. , Bačáková, L. , Lisá, V. , El‐Fakahany, E. E, & Tuček, S. , (1996). Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proceedings of the National Academy of Sciences of the United States of America, 93, 8705–8709. 10.1073/pnas.93.16.8705 PubMed DOI PMC

Jakubík, J. , El‐Fakahany, E. E. , & Dolezal, V. (2006). Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M1 and M2 muscarinic acetylcholine receptors. Molecular Pharmacology, 70, 656–666. PubMed

Jakubík, J. , El‐Fakahany, E. E. , & Doležal, V. (2015). Towards predictive docking at aminergic G‐protein coupled receptors. Journal of Molecular Modeling, 21, 284 10.1007/s00894-015-2824-9 PubMed DOI

Jakubík, J. , Janíčková, H. , Randáková, A. , El‐Fakahany, E. E. , & Doležal, V. (2011). Subtype differences in pre‐coupling of muscarinic acetylcholine receptors. PLoS ONE, 6, e27732 10.1371/journal.pone.0027732 PubMed DOI PMC

Jakubík, J. , Randáková, A. , Rudajev, V. , Zimčík, P. , El‐Fakahany, E. E. , & Doležal, V. (2019). Applications and limitations of fitting of the operational model to determine relative efficacies of agonists. Scientific Reports, 9, 4637 10.1038/s41598-019-40993-w PubMed DOI PMC

Kenakin, T. , & Christopoulos, A. (2013). Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nature Reviews. Drug Discovery, 12, 205–216. 10.1038/nrd3954 PubMed DOI

Kilkenny, C. , Browne, W. , Cuthill, I. C. , Emerson, M. , & Altman, D. G. (2010). Animal research: Reporting in vivo experiments: The ARRIVE guidelines. British Journal of Pharmacology, 160, 1577–1579. PubMed PMC

Kruse, A. C. , Hu, J. , Pan, A. C. , Arlow, D. H. , Rosenbaum, D. M. , Rosemond, E. , … Kobilka, B. K. (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 482, 552–556. 10.1038/nature10867 PubMed DOI PMC

Kruse, A. C. , Ring, A. M. , Manglik, A. , Hu, J. , Hu, K. , Eitel, K. , … Kobilka, B. K. (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 504, 101–106. 10.1038/nature12735 PubMed DOI PMC

Laugwitz, K. L. , Allgeier, A. , Offermanns, S. , Spicher, K. , Van Sande, J. , Dumont, J. E. , & Schultz, G. (1996). The human thyrotropin receptor: A heptahelical receptor capable of stimulating members of all four G protein families. Proceedings of the National Academy of Sciences, 93, 116–120. 10.1073/pnas.93.1.116 PubMed DOI PMC

Lefkowitz, R. J. (2013). A brief history of G‐protein coupled receptors (Nobel Lecture). Angewandte Chemie (International Ed. in English), 52, 6366–6378. PubMed

Maeda, S. , Qu, Q. , Robertson, M. J. , Skiniotis, G. , & Kobilka, B. K. (2019). Structures of the M1 and M2 muscarinic acetylcholine receptor/G‐protein complexes. Science, 364, 552–557. 10.1126/science.aaw5188 PubMed DOI PMC

Manglik, A. , Lin, H. , Aryal, D. K. , McCorvy, J. D. , Dengler, D. , Corder, G. , … Shoichet, B. K. (2016). Structure‐based discovery of opioid analgesics with reduced side effects. Nature, 537, 185–190. 10.1038/nature19112 PubMed DOI PMC

Masuho, I. , Ostrovskaya, O. , Kramer, G. M. , Jones, C. D. , Xie, K. , & Martemyanov, K. A. (2015). Distinct profiles of functional discrimination among G proteins determine the actions of G protein‐coupled receptors. Science Signaling, 8, 1–16. PubMed PMC

Miao, Y. , Nichols, S. S. E. S. , Gasper, P. P. M. P. , Metger, V. , & McCammon, J. A. (2013). Activation and dynamic network of the M2 muscarinic receptor. Proceedings of the National Academy of Sciences of the United States of America, 110, 10982–10987. 10.1073/pnas.1309755110 PubMed DOI PMC

Michal, P. , El‐Fakahany, E. E. , & Dolezal, V. (2007). Muscarinic M2 receptors directly activate Gq/11 and Gs G‐proteins. The Journal of Pharmacology and Experimental Therapeutics, 320, 607–614. 10.1124/jpet.106.114314 PubMed DOI

Michal, P. , El‐Fakahany, E. E. , & Doležal, V. (2014). Changes in membrane cholesterol differentially influence preferential and non‐preferential signaling of the M1 and M3 muscarinic acetylcholine receptors. Neurochemical Research, 40, 2068–2077. PubMed PMC

Nivedha, A. , Tautermann, C. , Bhattacharya, S. , Lee, S. , Casarosa, P. , Kollak, I. , … Vaidehi, N. (2018). Identifying functional hotspot residues for biased ligand design in G‐protein‐coupled receptors. Molecular Pharmacology, 93, 288–296. 10.1124/mol.117.110395 PubMed DOI PMC

Offermanns, S. , & Simon, M. I. (1995). Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. The Journal of Biological Chemistry, 270, 15175–15180. 10.1074/jbc.270.25.15175 PubMed DOI

Randáková, A. , Dolejší, E. , Rudajev, V. , Zimčík, P. , Doležal, V. , & El‐Fakahany, E. E. , (2018). Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline. Neuropharmacology, 133, 129–144. 10.1016/j.neuropharm.2018.01.027 PubMed DOI

Rose, A. S. , Elgeti, M. , Zachariae, U. , Grubmüller, H. , Hofmann, K. P. , Scheerer, P. , & Hildebrand, P. W. (2014). Position of transmembrane helix 6 determines receptor G protein coupling specificity. Journal of the American Chemical Society, 136, 11244–11247. 10.1021/ja5055109 PubMed DOI

Sastry, G. M. , Adzhigirey, M. , Day, T. , Annabhimoju, R. , & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer‐Aided Molecular Design, 27, 221–234. 10.1007/s10822-013-9644-8 PubMed DOI

Seemann, W. K. , Wenzel, D. , Schrage, R. , Etscheid, J. , Bödefeld, T. , Bartol, A. , … Mohr, K. (2017). Engineered context‐sensitive agonism: Tissue‐selective drug signaling through a G protein‐coupled receptor. The Journal of Pharmacology and Experimental Therapeutics, 360, 289–299. 10.1124/jpet.116.237149 PubMed DOI

Semack, A. , Sandhu, M. , Malik, R. U. , Vaidehi, N. , & Sivaramakrishnan, S. (2016). Structural elements in the Gαs and Gαq C termini that mediate selective G protein‐coupled receptor (GPCR) signaling. The Journal of Biological Chemistry, 291, 17929–17940. 10.1074/jbc.M116.735720 PubMed DOI PMC

Sethi, A. , Eargle, J. , Black, A. A. , & Luthey‐Schulten, Z. (2009). Dynamical networks in tRNA:protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 106, 6620–6625. 10.1073/pnas.0810961106 PubMed DOI PMC

Stengel, P. W. , Yamada, M. , Wess, J. , & Cohen, M. L. (2002). M3‐receptor knockout mice: Muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 282, R1443–R1449. PubMed

Tata, A. M. (2008). Muscarinic acetylcholine receptors: new potential therapeutic targets in antinociception and in cancer therapy. Recent Patents on CNS Drug Discovery, 3, 94–103. PubMed

Thal, D. M. , Sun, B. , Feng, D. , Nawaratne, V. , Leach, K. , Felder, C. C. , … Christopoulos, A. (2016). Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 531, 335–340. 10.1038/nature17188 PubMed DOI PMC

Weis, W. I. , & Kobilka, B. K. (2018). The molecular basis of G protein‐coupled receptor activation. Annual Review of Biochemistry, 87, 897–919. 10.1146/annurev-biochem-060614-033910 PubMed DOI PMC

Wess, J. , Eglen, R. M. , & Gautam, D. (2007). Muscarinic acetylcholine receptors: Mutant mice provide new insights for drug development. Nature Reviews. Drug Discovery, 6, 721–733. 10.1038/nrd2379 PubMed DOI

Zhang, J. , Chen, S.‐R. , Chen, H. , & Pan, H.‐L. (2018). RE1‐silencing transcription factor controls the acute‐to‐chronic neuropathic pain transition and Chrm2 receptor gene expression in primary sensory neurons. The Journal of Biological Chemistry, 293, 19078–19091. 10.1074/jbc.RA118.005846 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...