Towards predictive docking at aminergic G-protein coupled receptors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26453085
DOI
10.1007/s00894-015-2824-9
PII: 10.1007/s00894-015-2824-9
Knihovny.cz E-zdroje
- Klíčová slova
- Induced-fit docking, Ligand-receptor interaction, Molecular dynamics, Pose scoring,
- MeSH
- krystalografie rentgenová MeSH
- ligandy MeSH
- receptory spřažené s G-proteiny chemie MeSH
- simulace molekulového dockingu metody MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- receptory spřažené s G-proteiny MeSH
G protein-coupled receptors (GPCRs) are hard to crystallize. However, attempts to predict their structure have boomed as a result of advancements in crystallographic techniques. This trend has allowed computer-aided molecular modeling of GPCRs. We analyzed the performance of four molecular modeling programs in pose evaluation of re-docked antagonists / inverse agonists to 11 original crystal structures of aminergic GPCRs using an induced fit-docking procedure. AutoDock and Glide were used for docking. AutoDock binding energy function, GlideXP, Prime MM-GB/SA, and YASARA binding function were used for pose scoring. Root mean square deviation (RMSD) of the best pose ranged from 0.09 to 1.58 Å, and median RMSD of the top 60 poses ranged from 1.47 to 3.83 Å. However, RMSD of the top pose ranged from 0.13 to 7.33 Å and ranking of the best pose ranged from the 1st to 60th out of 60 poses. Moreover, analysis of ligand-receptor interactions of top poses revealed substantial differences from interactions found in crystallographic structures. Bad ranking of top poses and discrepancies between top docked poses and crystal structures render current simple docking methods unsuitable for predictive modeling of receptor-ligand interactions. Prime MM-GB/SA optimized for 3NY9 by multiple linear regression did not work well at 3NY8 and 3NYA, structures of the same receptor with different ligands. However, 9 of 11 trajectories of molecular dynamics simulations by Desmond of top poses converged with trajectories of crystal structures. Key interactions were properly detected for all structures. This procedure also worked well for cross-docking of tested β2-adrenergic antagonists. Thus, this procedure represents a possible way to predict interactions of antagonists with aminergic GPCRs.
Zobrazit více v PubMed
J Med Chem. 2004 Mar 25;47(7):1739-49 PubMed
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2240-9 PubMed
Proteins. 2002 May 15;47(3):393-402 PubMed
J Comput Aided Mol Des. 2013 Dec;27(12):989-1007 PubMed
Acta Crystallogr D Biol Crystallogr. 1999 Jan;55(Pt 1):191-205 PubMed
Nature. 2012 Feb 22;482(7386):552-6 PubMed
Nat Struct Biol. 2003 Dec;10(12):980 PubMed
J Mol Recognit. 2015 Oct;28(10):581-604 PubMed
J Comput Chem. 2009 Dec;30(16):2785-91 PubMed
J Med Chem. 1999 Dec 16;42(25):5100-9 PubMed
Nature. 2011 Jun 22;475(7354):65-70 PubMed
Nat Rev Drug Discov. 2009 Jun;8(6):455-63 PubMed
J Comput Aided Mol Des. 2013 Aug;27(8):707-21 PubMed
Trends Pharmacol Sci. 2004 Aug;25(8):413-22 PubMed
Drug Discov Today. 2006 Jun;11(11-12):481-93 PubMed
Proteins. 2011 Jun;79(6):1695-703 PubMed
Nature. 2008 Jul 24;454(7203):486-91 PubMed
J Comput Chem. 2012 Feb 15;33(5):561-72 PubMed
J Am Chem Soc. 2010 Aug 25;132(33):11443-5 PubMed
J Pharmacol Exp Ther. 1995 Sep;274(3):1077-83 PubMed
Science. 2007 Nov 23;318(5854):1258-65 PubMed
J Chem Inf Model. 2010 Apr 26;50(4):626-37 PubMed
J Med Chem. 2006 Oct 5;49(20):5912-31 PubMed
Science. 2010 Nov 19;330(6007):1091-5 PubMed
J Chem Inf Model. 2011 Feb 28;51(2):315-25 PubMed
J Med Chem. 2008 Aug 28;51(16):4978-85 PubMed
J Comput Aided Mol Des. 2013 Mar;27(3):221-34 PubMed
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8228-32 PubMed
Mol Pharmacol. 1993 Sep;44(3):583-8 PubMed
Drug Discov Today. 2012 Dec;17(23-24):1270-81 PubMed
Structure. 2011 Aug 10;19(8):1108-26 PubMed
J Chem Inf Model. 2014 Jan 27;54(1):243-53 PubMed
Science. 2000 Aug 4;289(5480):739-45 PubMed
J Chem Inf Model. 2014 Jan 27;54(1):169-83 PubMed
J Mol Model. 2013 Nov;19(11):4919-30 PubMed
Nature. 2012 Jan 25;482(7386):547-51 PubMed
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1937-42 PubMed
J Struct Biol. 2003 Apr;142(1):108-32 PubMed
J Chem Inf Model. 2005 Jul-Aug;45(4):1134-46 PubMed
J Comput Aided Mol Des. 2015 Jan;29(1):59-66 PubMed
J Am Chem Soc. 2011 Aug 24;133(33):13197-204 PubMed
Structure. 2014 Aug 5;22(8):1120-1139 PubMed
J Med Chem. 2006 Jan 26;49(2):534-53 PubMed
Mol Pharmacol. 1989 Dec;36(6):840-7 PubMed
J Chem Inf Model. 2012 Dec 21;52(12):3263-77 PubMed
Med Res Rev. 2006 Sep;26(5):531-68 PubMed
Structure. 2008 Jun;16(6):897-905 PubMed