Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28091608
PubMed Central
PMC5238504
DOI
10.1038/srep40381
PII: srep40381
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- kinetika MeSH
- křečci praví MeSH
- lidé MeSH
- ligandy MeSH
- mutantní proteiny chemie metabolismus MeSH
- N-methylskopolamin chemie metabolismus MeSH
- proteinové domény MeSH
- receptory muskarinové chemie metabolismus MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky MeSH
- tritium metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zrychlení MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- mutantní proteiny MeSH
- N-methylskopolamin MeSH
- receptory muskarinové MeSH
- tritium MeSH
Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.
Zobrazit více v PubMed
Bonner T. I. The molecular basis of muscarinic receptor diversity. Trends Neurosci 12, 148–51 (1989). PubMed
Eglen R. M. Overview of Muscarinic Receptor Subtypes In Handb exp pharmacol (eds Fryer A. D., Christopoulos A. & Nathanson N. M.) pp. 3–28, Springer (2012). PubMed
Jakubík J. et al.. Outline of therapeutic interventions with muscarinic receptor-mediated transmission. Physiol Res 63 Suppl 1, S177–89 (2014). PubMed
Kruse A. C. et al.. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 13, 549–60 (2014). PubMed PMC
Haga K. et al.. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–51 (2012). PubMed PMC
Kruse A. C. et al.. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–6 (2012). PubMed PMC
Leppik R. A., Miller R. C., Eck M. & Paquet J. L. Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the m2 muscarinic acetylcholine receptor. Mol Pharmacol 45, 983–90 (1994). PubMed
Gnagey A. L., Seidenberg M. & Ellis J. Site-directed mutagenesis reveals two epitopes involved in the subtype selectivity of the allosteric interactions of gallamine at muscarinic acetylcholine receptors. Mol Pharmacol 56, 1245–53 (1999). PubMed
Krejčí A. & Tuček S. Changes of cooperativity between N-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic M(3) receptors. Mol Pharmacol 60, 761–7 (2001). PubMed
Voigtländer U. et al.. Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupie. Mol Pharmacol 64, 21–31 (2003). PubMed
Jakubík J., Krejčí A. & Doležal V. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators. J Pharmacol Exp Ther 313, 688–96 (2005). PubMed
Jäger D. et al.. Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein-coupled receptor activation. J Biol Chem 282, 34968–76 (2007). PubMed
Kruse A. C. et al.. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–6 (2013). PubMed PMC
Abdul-Ridha A. et al.. Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. J Biol Chem 289, 6067–79 (2014). PubMed PMC
Gregory K. J., Hall N. E., Tobin A. B., Sexton P. M. & Christopoulos A. Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J Biol Chem 285, 7459–74 (2010). PubMed PMC
Valant C. et al.. A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J Biol Chem 283, 29312–21 (2008). PubMed PMC
Jakubík J., Zimčík P., Randáková A., Fuksová K., El-Fakahany E. E. & Doležal V. Molecular mechanisms of methoctramine binding and selectivity at muscarinic acetylcholine receptors. Mol Pharmacol 86, 180–92 (2014). PubMed
Keov P. et al.. Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor. J Biol Chem 289, 23817–37 (2014). PubMed PMC
Thorsen T. S., Matt R., Weis W. I. & Kobilka B. K. Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor Crystallogenesis. Structure 22, 1657–64 (2014). PubMed PMC
Thal D. M. et al.. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340 (2016). PubMed PMC
Järv J., Hedlund B. & Bartfai T. Isomerization of the muscarinic receptor. antagonist complex. J Biol Chem 254, 5595–8 (1979). PubMed
Järv J., Hedlund B. & Bartfai T. Kinetic studies on muscarinic antagonist-agonist competition. J Biol Chem 255, 2649–51 (1980). PubMed
Jakubík J., El-Fakahany E. E. & Tuček S. Evidence for a tandem two-site model of ligand binding to muscarinic acetylcholine receptors. J Biol Chem 275, 18836–44 (2000). PubMed
Redka D. S., Pisterzi L. F. & Wells J. W. Binding of orthosteric ligands to the allosteric site of the M(2) muscarinic cholinergic receptor. Mol Pharmacol 74, 834–43 (2008). PubMed
Goodwin J. A., Hulme E. C., Langmead C. J. & Tehan B. G. Roof and floor of the muscarinic binding pocket: variations in the binding modes of orthosteric ligands. Mol Pharmacol 72, 1484–96 (2007). PubMed
Scarselli M., Li B., Kim S. & Wess J. Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J Biol Chem 282, 7385–96 (2007). PubMed
Warne T. et al.. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454, 486–91 (2008). PubMed PMC
Dror R. O. et al.. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 108, 13118–23 (2011). PubMed PMC
Guo D. et al.. Molecular Basis of Ligand Dissociation from the Adenosine A2A Receptor. Mol Pharmacol 89, 485–91 (2016). PubMed
Ballesteros J. & Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. In Methods in neurosciences (eds Sealfon S. & Conn P.) pp. 366–428, Academic Press (1995).
Burgisser E., Lefkowitz R. J. & DeLean A. Alternative explanation for the apparent “two-step” binding kinetics of high-affinity racemic antagonist radioligands. Mol Pharmacol 19, 509–12 (1981). PubMed
Waelbroeck M., Tastenoy M., Camus J. & Christophe J. Binding kinetics of quinuclidinyl benzilate and methyl-quinuclidinyl benzilate enantiomers at neuronal (M1), cardiac (M2), and pancreatic (M3) muscarinic receptors. Mol Pharmacol 40, 413–20 (1991). PubMed
Lazareno S. & Birdsall N. J. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol 48, 362–78 (1995). PubMed
Dror R. O. et al.. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503, 295–9 (2013). PubMed
Guo D., Hillger J. M., IJzerman A. P. & Heitman L. H. Drug-target residence time–a case for G protein-coupled receptors. Med Res Rev 34, 856–92 (2014). PubMed
Van Durme J. et al.. A graphical interface for the FoldX forcefield. Bioinformatics 27, 1711–2 (2011). PubMed
Jakubík J., El-Fakahany E. E. & Doležal V. Towards predictive docking at aminergic G-protein coupled receptors. J Mol Model 21, 284 (2015). PubMed
Bowers K. J. et al.. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC06: International Conference for High Performance Computing, Networking, Storage and Analysis, November 11–17, 2006, Tampa, FL. In Proceedings of the ACM/IEEE conference on supercomputing. p. 84, ACM Press New York (2006).
Krieger E., Koraimann G. & Vriend G. Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins 47, 393–402 (2002). PubMed
Current Advances in Allosteric Modulation of Muscarinic Receptors
Novel long-acting antagonists of muscarinic ACh receptors