Novel long-acting antagonists of muscarinic ACh receptors
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29498041
PubMed Central
PMC5913398
DOI
10.1111/bph.14187
Knihovny.cz E-zdroje
- MeSH
- antagonisté muskarinových receptorů chemická syntéza chemie farmakologie MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- karbachol chemie farmakologie MeSH
- kultivované buňky MeSH
- molekulární struktura MeSH
- pyridiny chemická syntéza chemie farmakologie MeSH
- receptory muskarinové metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antagonisté muskarinových receptorů MeSH
- karbachol MeSH
- pyridiny MeSH
- receptory muskarinové MeSH
BACKGROUND AND PURPOSE: The aim of this study was to develop potent and long-acting antagonists of muscarinic ACh receptors. The 4-hexyloxy and 4-butyloxy derivatives of 1-[2-(4-oxidobenzoyloxy)ethyl]-1,2,3,6-tetrahydropyridin-1-ium were synthesized and tested for biological activity. Antagonists with long-residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long-acting effects allow for reduced daily doses and adverse effects. EXPERIMENTAL APPROACH: The binding and antagonism of functional responses to the agonist carbachol mediated by 4-hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4-butyloxy analogues. KEY RESULTS: The 4-hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half-life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. CONCLUSIONS AND IMPLICATIONS: The 4-hexyloxy derivatives were found to be potent long-acting M1 -preferring antagonists. In view of current literature, M1 -selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits.
Department of Neurochemistry Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Department of Physical Sciences Barry University Miami Shores FL USA
Zobrazit více v PubMed
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Marrion NV, Peters JA et al (2017). The Concise Guide to PHARMACOLOGY 2017/18: G protein‐coupled receptors. Br J Pharmacol 174: S17–S129. PubMed PMC
Bonner TI (1989). The molecular basis of muscarinic receptor diversity. Trends Neurosci 12: 148–151. PubMed
Boulos JF, Jakubik J, Boulos JM, Randakova A, Momirov J (2018). Synthesis of novel and functionally selective non‐competitive muscarinic antagonists as chemical probes. Chem Biol Drug Des 91: 93–104. PubMed
Bradley SJ, Bourgognon JM, Sanger HE, Verity N, Mogg AJ, White DJ et al (2017). M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J Clin Invest 127: 487–499. PubMed PMC
Bymaster FP, Carter PA, Peters SC, Zhang W, Ward JS, Mitch CH et al (1998). Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res 795: 179–190. PubMed
Cheng Y, Prusoff WH (1973). Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108. PubMed
Christopoulos A, Pierce TL, Sorman JL, El‐Fakahany EE (1998). On the unique binding and activating properties of xanomeline at the M1 muscarinic acetylcholine receptor. Mol Pharmacol 53: 1120–1130. PubMed
Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SP, Giembycz MA et al (2015). Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 172: 3461–3471. PubMed PMC
Disse B, Reichl R, Speck G, Traunecker W, Rominger KL, Hammer R (1993). Ba 679 BR, A novel long‐acting anticholinergic bronchodilator. Life Sci 52: 537–544. PubMed
Eglen RM (2012). Overview of muscarinic receptor subtypes In: Fryer AD, Christopoulos A, Nathanson NM. (eds). Muscarinic Receptors, Springer‐Verlang; Berlin Heidelberg: Handb Exp Pharmacol, Vol. 208, pp. 3–28. PubMed
Ehlert FJ (2003). Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci 74: 355–366. PubMed
El‐Fakahany EE, Jakubík J (2016). Radioligand binding at muscarinic receptors In: Myslivecek J, Jakubik J. (eds). Muscarinic Receptor: From Structure to Animal Models, Humana Press, New York: Neuromethods 107: 37–68.
Eskow Jaunarajs KL, Bonsi P, Chesselet MF, Standaert DG, Pisani A (2015). Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 127–128: 91–107. PubMed PMC
Haga K, Kruse AC, Asada H, Yurugi‐Kobayashi T, Shiroishi M, Zhang C et al (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482: 547–551. PubMed PMC
Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S et al (2018). The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucl Acids Res 46: D1091–D1106. PubMed PMC
Heusler P, Cussac D, Naline E, Tardif S, Clerc T, Devillier P (2015). Characterization of V0162, a new long‐acting antagonist at human M3 muscarinic acetylcholine receptors. Pharmacol Res 100: 117–126. PubMed
Jakubík J, El‐Fakahany EE, Tuček S (2000). Evidence for a tandem two‐site model of ligand binding to muscarinic acetylcholine receptors. J Biol Chem 275: 18836–18844. PubMed
Jakubík J, Michal P, Machová E, Doležal V (2008). Importance and prospects for design of selective muscarinic agonists. Physiol Res 57: S39–S47. PubMed
Jakubík J, Randáková A, Zimčík P, El‐Fakahany EE, Doležal V (2017). Binding of N‐methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors. Sci Rep 7: 40381. PubMed PMC
Jakubík J, Tuček S, El‐Fakahany EE (2002). Allosteric modulation by persistent binding of xanomeline of the interaction of competitive ligands with the M1 muscarinic acetylcholine receptor. J Pharmacol Exp Ther 301: 1033–1041. PubMed
Jakubík J, Tuček S, El‐Fakahany EE (2004). Role of receptor protein and membrane lipids in xanomeline wash‐resistant binding to muscarinic M1 receptors. J Pharmacol Exp Ther 308: 105–110. PubMed
Jeon J, Dencker D, Wortwein G, Woldbye DPD, Cui Y, Davis AA et al (2010). A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine‐dependent behaviors. J Neurosci 30: 2396–2405. PubMed PMC
Kenakin TP (2014). Allosteric modulation In: Kenakin TP. (ed). A Pharmacology Primer: Techniques for More Effective and Strategic Drug Discovery. Academic Press: New York, NY, pp. 155–179.
Klinkenberg I, Blokland A (2010). The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci Biobehav Rev 34: 1307–1350. PubMed
Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E et al (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482: 552–556. PubMed PMC
Langmead CJ, Fry VAH, Forbes IT, Branch CL, Christopoulos A, Wood MD et al (2006). Probing the molecular mechanism of interaction between 4‐n ‐ and the muscarinic M 1 receptor: direct pharmacological evidence that AC‐42 is an allosteric agonist. Mol Pharmacol 69: 236–246. PubMed
Lazareno S, Birdsall NJ (1995). Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein‐coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol 48: 362–378. PubMed
Lester DB, Rogers TD, Blaha CD (2010). Acetylcholine‐dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16: 137–162. PubMed PMC
Miller SL, Aroniadou‐Anderjaska V, Pidoplichko VI, Figueiredo TH, Apland JP, Krishnan JKS et al (2017). The M1 muscarinic receptor antagonist VU0255035 delays the development of status epilepticus after organophosphate exposure and prevents hyperexcitability in the basolateral amygdala. J Pharmacol Exp Ther 360: 23–32. PubMed PMC
Navarria A, Wohleb ES, Voleti B, Ota KT, Dutheil S, Lepack AE et al (2015). Rapid antidepressant actions of scopolamine: role of medial prefrontal cortex and M1‐subtype muscarinic acetylcholine receptors. Neurobiol Dis 82: 254–261. PubMed PMC
Offermanns S, Simon MI (1995). G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270: 15175–15180. PubMed
Prat M, Fernández D, Buil MA, Crespo MI, Casals G, Ferrer M et al (2009). Discovery of novel quaternary ammonium derivatives of (3R)‐quinuclidinol esters as potent and long‐acting muscarinic antagonists with potential for minimal systemic exposure after inhaled administration: identification of (3 R )‐3‐{[Hydroxy(di‐2‐thienyl)a. J Med Chem 52: 5076–5092. PubMed
Šantrůčková E, Doležal V, El‐Fakahany EE, Jakubík J (2014). Long‐term activation upon brief exposure to xanomleline is unique to M1 and M4 subtypes of muscarinic acetylcholine receptors. PLoS One 9: e88910. PubMed PMC
Shannon HE, Bymaster FP, Calligaro DO, Greenwood B, Mitch CH, Sawyer BD et al (1994). Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther 269: 271–281. PubMed
Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC et al (2016). Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531: 335–340. PubMed PMC
Thomsen M, Woldbye DPD, Wo G, Fink‐jensen A, Caine SB (2005). Reduced cocaine self‐administration in muscarinic M5 acetylcholine receptor‐deficient mice. J Neurosci 25: 8141–8149. PubMed PMC
Ulrik CS (2012). Once‐daily glycopyrronium bromide, a long‐acting muscarinic antagonist, for chronic obstructive pulmonary disease: a systematic review of clinical benefit. Int J Chron Obstruct Pulmon Dis 7: 673–678. PubMed PMC
Woolley ML, Carter HJ, Gartlon JE, Watson JM, Dawson LA (2009). Attenuation of amphetamine‐induced activity by the non‐selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol 603: 147–149. PubMed
Xiang Z, Thompson AD, Jones CK, Lindsley CW, Conn PJ (2012). Roles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson's disease. J Pharmacol Exp Ther 340: 595–603. PubMed PMC