Long-term activation upon brief exposure to xanomleline is unique to M1 and M4 subtypes of muscarinic acetylcholine receptors
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24558448
PubMed Central
PMC3928307
DOI
10.1371/journal.pone.0088910
PII: PONE-D-13-34133
Knihovny.cz E-zdroje
- MeSH
- AMP cyklický metabolismus MeSH
- buněčná membrána účinky léků metabolismus MeSH
- časové faktory MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- extracelulární prostor účinky léků metabolismus MeSH
- intracelulární prostor účinky léků metabolismus MeSH
- kinetika MeSH
- křečci praví MeSH
- lidé MeSH
- N-methylskopolamin farmakologie MeSH
- pyridiny farmakologie MeSH
- receptor muskarinový M1 agonisté antagonisté a inhibitory metabolismus MeSH
- receptor muskarinový M4 agonisté antagonisté a inhibitory metabolismus MeSH
- thiadiazoly farmakologie MeSH
- vápník metabolismus MeSH
- vazebná místa účinky léků MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AMP cyklický MeSH
- N-methylskopolamin MeSH
- pyridiny MeSH
- receptor muskarinový M1 MeSH
- receptor muskarinový M4 MeSH
- thiadiazoly MeSH
- vápník MeSH
- xanomeline MeSH Prohlížeč
Xanomeline is an agonist endowed with functional preference for M1/M4 muscarinic acetylcholine receptors. It also exhibits both reversible and wash-resistant binding to and activation of these receptors. So far the mechanisms of xanomeline selectivity remain unknown. To address this question we employed microfluorometric measurements of intracellular calcium levels and radioligand binding to investigate differences in the short- and long-term effects of xanomeline among muscarinic receptors expressed individually in Chinese hamster ovary cells. 1/One-min exposure of cells to xanomeline markedly increased intracellular calcium at hM1 and hM4, and to a lesser extent at hM2 and hM3 muscarinic receptors for more than 1 hour. 2/Unlike the classic agonists carbachol, oxotremorine, and pilocarpine 10-min exposure to xanomeline did not cause internalization of any receptor subtype. 3/Wash-resistant xanomeline selectively prevented further increase in intracellular calcium by carbachol at hM1 and hM4 receptors. 4/After transient activation xanomeline behaved as a long-term antagonist at hM5 receptors. 5/The antagonist N-methylscopolamine (NMS) reversibly blocked activation of hM1 through hM4 receptors by xanomeline. 6/NMS prevented formation of xanomeline wash-resistant binding and activation at hM2 and hM4 receptors and slowed them at hM1, hM3 and hM5 receptors. Our results show commonalities of xanomeline reversible and wash-resistant binding and short-time activation among the five muscarinic receptor subtypes. However long-term receptor activation takes place in full only at hM1 and hM4 receptors. Moreover xanomeline displays higher efficacy at hM1 and hM4 receptors in primary phasic intracellular calcium release. These findings suggest the existence of particular activation mechanisms specific to these two receptors.
Zobrazit více v PubMed
Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237: 527–532. PubMed
Jakubík J, El-Fakahany EE (2010) Allosteric Modulation of Muscarinic Acetylcholine Receptors. Pharmaceuticals 9: 2838–2860. PubMed PMC
Christie JE, Shering A, Ferguson J, Glen AI (1981) Physostigmine and arecoline: effects of intravenous infusions in Alzheimer presenile dementia. Br J Psychiatry 138: 46–50. PubMed
Felder CC, Porter AC, Skillman TL, Zhang L, Bymaster FP, et al. (2001) Elucidating the role of muscarinic receptors in psychosis. Life Sci 68: 2605–2613. PubMed
Langmead CJ, Watson J, Reavill C (2008) Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 117: 232–243. PubMed
Shannon HE, Bymaster FP, Calligaro DO, Greenwood B, Mitch CH, et al. (1994) Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther 269: 271–281. PubMed
Bymaster FP, Carter PA, Peters SC, Zhang W, Ward JS, et al. (1998) Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res 795: 179–190. PubMed
Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, et al. (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54: 465–473. PubMed
Bymaster FP, McKinzie DL, Felder CC, Wess J (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28: 437–442. PubMed
Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, et al. (2000) Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42: 249–259. PubMed
Andersen MB, Fink-Jensen A, Peacock L, Gerlach J, Bymaster F, et al. (2003) The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 28: 1168–1175. PubMed
Stanhope KJ, Mirza NR, Bickerdike MJ, Bright JL, Harrington NR, et al. (2001) The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J Pharmacol Exp Ther 299: 782–792. PubMed
Bymaster FP, Felder C, Ahmed S, McKinzie D (2002) Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS Neurol Disord 1: 163–181. PubMed
Mirza NR, Peters D, Sparks RG (2003) Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 9: 159–186. PubMed PMC
Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dubé S, et al. (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165: 1033–1039. PubMed
Christopoulos A, El-Fakahany EE (1997) Novel persistent activation of muscarinic M1 receptors by xanomeline. Eur J Pharmacol 334: R3–4. PubMed
Christopoulos A, Pierce TL, Sorman JL, El-Fakahany EE (1998) On the unique binding and activating properties of xanomeline at the M1 muscarinic acetylcholine receptor. Mol Pharmacol 53: 1120–1130. PubMed
Jakubík J, Tucek S, El-Fakahany EE (2002) Allosteric modulation by persistent binding of xanomeline of the interaction of competitive ligands with the M1 muscarinic acetylcholine receptor. J Pharmacol Exp Ther 301: 1033–1041. PubMed
Jakubík J, Tucek S, El-Fakahany EE (2004) Role of receptor protein and membrane lipids in xanomeline wash-resistant binding to muscarinic M1 receptors. J Pharmacol Exp Ther 308: 105–110. PubMed
Jakubík J, El-Fakahany EE, Dolezal V (2006) Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol 70: 656–666. PubMed
Machová E, Jakubík J, El-Fakahany EE, Doležal V (2007) Wash-resistantly bound xanomeline inhibits acetylcholine release by persistent activation of presynaptic M(2) and M(4) muscarinic receptors in rat brain. J Pharmacol Exp Ther 322: 316–323. PubMed
Grant MKO, El-Fakahany EE (2005) Persistent binding and functional antagonism by xanomeline at the muscarinic M5 receptor. J Pharmacol Exp Ther 315: 313–319. PubMed
Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, et al. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol 126: 1620–1624. PubMed PMC
Noetzel MJ, Grant MKO, El-Fakahany EE (2009) Mechanisms of M3 muscarinic receptor regulation by wash-resistant xanomeline binding. Pharmacology 83: 301–317. PubMed PMC
Jakubík J, Michal P, Machová E, Doležal V (2008) Importance and prospects for design of selective muscarinic agonists. Physiol Res 57: S39–47. PubMed
Grant MKO, Noetzel MJ, De Lorme KC, Jakubík J, Doležal V, et al. (2010) Pharmacological evaluation of the long-term effects of xanomeline on the m(1) muscarinic acetylcholine receptor. PLoS One 5: e15722. PubMed PMC
Peterson GL (1977) A simplification of the protein assay method of Lowry, et al. which is more generally applicable. Anal Biochem 83: 346–356. PubMed
Lu ZL, Hulme EC (1999) The functional topography of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor, revealed by scanning mutagenesis. J Biol Chem 274: 7309–7315. PubMed
Milligan G, Marshall F, Rees S (1996) G16 as a universal G protein adapter: implications for agonist screening strategies. Trends Pharmacol Sci 17: 235–237. PubMed
Gregory KJ, Hall NE, Tobin AB, Sexton PM, Christopoulos A (2010) Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J Biol Chem 285: 7459–7474. PubMed PMC
Koenig JA, Edwardson JM (1996) Intracellular trafficking of the muscarinic acetylcholine receptor: importance of subtype and cell type. Mol Pharmacol 49: 351–359. PubMed
Shockley MS, Tolbert LM, Tobin AB, Nahorski SR, Sadée W, et al. (1999) Differential regulation of muscarinic M1 and M3 receptors by a putative phosphorylation domain. Eur J Pharmacol 377: 137–146. PubMed
Krudewig R, Langer B, Vögler O, Markschies N, Erl M, et al. (2000) Distinct internalization of M2 muscarinic acetylcholine receptors confers selective and long-lasting desensitization of signaling to phospholipase C. J Neurochem 74: 1721–1730. PubMed
Davis CN, Bradley SR, Schiffer HH, Friberg M, Koch K, et al. (2009) Differential regulation of muscarinic M1 receptors by orthosteric and allosteric ligands. BMC Pharmacol 9: 14. PubMed PMC
Jakubík J, Bačáková L, el-Fakahany EE, Tuček S (1995) Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther 274: 1077–1083. PubMed
Novel long-acting antagonists of muscarinic ACh receptors