Changes in Membrane Cholesterol Differentially Influence Preferential and Non-preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors

. 2015 Oct ; 40 (10) : 2068-77. [epub] 20140513

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24821386
Odkazy

PubMed 24821386
PubMed Central PMC4630253
DOI 10.1007/s11064-014-1325-z
PII: 10.1007/s11064-014-1325-z
Knihovny.cz E-zdroje

We have found earlier that changes in membrane cholesterol content have distinct impact on signaling via the M1, M2, or M3 receptors expressed in CHO cells (CHO-M1 through CHO-M3). Now we investigated whether gradual changes in membrane cholesterol exerts differential effects on coupling of the M1 and M3 muscarinic receptors to preferential signaling pathways through Gq/11 and non-preferential Gs G-proteins signaling. Changes in membrane cholesterol resulted in only marginal alterations of antagonist and agonist affinity of the M1 and M3 receptors, and did not influence precoupling of either subtype. Changes in membrane cholesterol did not influence parameters of carbachol-stimulated GTP-γ(35)S binding in CHO-M1 membranes while reduction as well as augmentation of membrane cholesterol lowered the efficacy but increased the potency of carbachol in CHO-M3 membranes. Gradual increase or decrease in membrane cholesterol concentration dependently attenuated agonist-induced inositolphosphates release while only cholesterol depletion increased basal values in both cell lines. Similarly, membrane cholesterol manipulation modified basal and agonist-stimulated cAMP synthesis via Gs in the same way in both cell lines. These results demonstrate that changes in membrane cholesterol concentration differentially impact preferential and non-preferential M1 and M3 receptor signaling. They point to the activated G-protein/effector protein interaction as the main site of action in alterations of M1 receptor-mediated stimulation of second messenger pathways. On the other hand, modifications in agonist-stimulated GTP-γ(35)S binding in CHO-M3 membranes indicate that in this case changes in ligand-activated receptor/G-protein interaction may also play a role.

Zobrazit více v PubMed

Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, Dingwall C, De Strooper B, Dotti CG. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol. 2004;167:953–960. doi: 10.1083/jcb.200404149. PubMed DOI PMC

Bonner TI. The molecular basis of muscarinic receptor diversity. Trends Neurosci. 1989;12:148–151. doi: 10.1016/0166-2236(89)90054-4. PubMed DOI

Bonner TI (1989) New subtypes of muscarinic acetylcholine receptors. Trends Pharmacol Sci Suppl:11–15 PubMed

Bonner TI, Buckley NJ, Young AC, Brann MR. Identification of a family of muscarinic acetylcholine receptor genes. Science. 1987;237:527–532. doi: 10.1126/science.3037705. PubMed DOI

Bonner TI, Young AC, Brann MR, Buckley NJ. Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron. 1988;1:403–410. doi: 10.1016/0896-6273(88)90190-0. PubMed DOI

Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski R, Jaffe EA, Gandy SE, Greengard P. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci USA. 1992;89:10075–10078. doi: 10.1073/pnas.89.21.10075. PubMed DOI PMC

Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol. 2003;160:113–123. doi: 10.1083/jcb.200207113. PubMed DOI PMC

Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T. Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA. 2001;98:5856–5861. doi: 10.1073/pnas.081620098. PubMed DOI PMC

Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256–1272. doi: 10.1124/mol.63.6.1256. PubMed DOI

Grimm MO, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M, Tschape JA, De Strooper B, Muller U, Shen J, Hartmann T. Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol. 2005;7:1118–1123. doi: 10.1038/ncb1313. PubMed DOI

Head BP, Patel HH, Insel PA. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta. 2014;1838:532–545. doi: 10.1016/j.bbamem.2013.07.018. PubMed DOI PMC

Hu J, Wang Y, Zhang X, Lloyd JR, Li JH, Karpiak J, Costanzi S, Wess J. Structural basis of G protein-coupled receptor-G protein interactions. Nat Chem Biol. 2010;6:541–548. doi: 10.1038/nchembio.385. PubMed DOI PMC

Hulme EC, Birdsall NJ, Buckley NJ. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol. 1990;30:633–673. doi: 10.1146/annurev.pa.30.040190.003221. PubMed DOI

Hulme EC, Kurtenbach E, Curtis CA. Muscarinic acetylcholine receptors: structure and function. Biochem Soc Trans. 1991;19:133–138. doi: 10.1042/bst0190133. PubMed DOI

Hulme EC, Lu ZL, Saldanha JW, Bee MS. Structure and activation of muscarinic acetylcholine receptors. Biochem Soc Trans. 2003;31:29–34. doi: 10.1042/bst0310029. PubMed DOI

Jakubik J, Bacakova L, Lisa V, el-Fakahany EE, Tucek S. Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc Natl Acad Sci USA. 1996;93:8705–8709. doi: 10.1073/pnas.93.16.8705. PubMed DOI PMC

Jakubik J, El-Fakahany EE, Dolezal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. PubMed DOI

Jakubik J, Janickova H, El-Fakahany EE, Dolezal V. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy. Br J Pharmacol. 2011;162:1029–1044. doi: 10.1111/j.1476-5381.2010.01081.x. PubMed DOI PMC

Jakubik J, Janickova H, Randakova A, El-Fakahany EE, Dolezal V. Subtype differences in pre-coupling of muscarinic acetylcholine receptors. PLoS ONE. 2011;6:e27732. doi: 10.1371/journal.pone.0027732. PubMed DOI PMC

Jones SV. Muscarinic receptor subtypes: modulation of ion channels. Life Sci. 1993;52:457–464. doi: 10.1016/0024-3205(93)90302-J. PubMed DOI

Jones SV, Heilman CJ, Brann MR. Functional responses of cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol. 1991;40:242–247. PubMed

Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI

Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A, Dingwall C, Dotti CG. Raft disorganization leads to reduced plasmin activity in Alzheimer’s disease brains. EMBO Rep. 2003;4:1190–1196. doi: 10.1038/sj.embor.7400021. PubMed DOI PMC

Machova E, Jakubik J, Michal P, Oksman M, Iivonen H, Tanila H, Dolezal V. Impairment of muscarinic transmission in transgenic APPswe/PS1dE9 mice. Neurobiol Aging. 2008;29:368–378. doi: 10.1016/j.neurobiolaging.2006.10.029. PubMed DOI

Maulik M, Westaway D, Jhamandas JH, Kar S. Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol Neurobiol. 2013;47:37–63. doi: 10.1007/s12035-012-8337-y. PubMed DOI

Michal P, El-Fakahany EE, Dolezal V. Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J Pharmacol Exp Ther. 2007;320:607–614. doi: 10.1124/jpet.106.114314. PubMed DOI

Michal P, Lysikova M, Tucek S. Dual effects of muscarinic M(2) acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists. Br J Pharmacol. 2001;132:1217–1228. doi: 10.1038/sj.bjp.0703931. PubMed DOI PMC

Michal P, Rudajev V, El-Fakahany EE, Dolezal V. Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur J Pharmacol. 2009;606:50–60. doi: 10.1016/j.ejphar.2009.01.028. PubMed DOI PMC

Nitsch RM. From acetylcholine to amyloid: neurotransmitters and the pathology of Alzheimer’s disease. Neurodegeneration. 1996;5:477–482. doi: 10.1006/neur.1996.0066. PubMed DOI

Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science. 1992;258:304–307. doi: 10.1126/science.1411529. PubMed DOI

Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J. 1987;6:3923–3929. PubMed PMC

Reitz C. Dyslipidemia and the risk of Alzheimer’s disease. Curr Atheroscler Rep. 2013;15:307. doi: 10.1007/s11883-012-0307-3. PubMed DOI PMC

Santruckova E, Dolezal V, El-Fakahany EE, Jakubik J (2014) Differences in immediate and delayed responses of muscarinic acetylcholine receptor subtypes to brief exposure to xanomeline. PloS One (in press) PubMed PMC

Simons K, Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest. 2002;110:597–603. doi: 10.1172/JCI0216390. PubMed DOI PMC

Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA. 1998;95:6460–6464. doi: 10.1073/pnas.95.11.6460. PubMed DOI PMC

Stefani M, Liguri G. Cholesterol in Alzheimer’s disease: unresolved questions. Curr Alzheimer Res. 2009;6:15–29. doi: 10.2174/156720509787313899. PubMed DOI

Wess J, Blin N, Mutschler E, Bluml K. Muscarinic acetylcholine receptors: structural basis of ligand binding and G protein coupling. Life Sci. 1995;56:915–922. doi: 10.1016/0024-3205(95)00028-5. PubMed DOI

Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF. Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. J Exp Med. 2012;209:2501–2513. doi: 10.1084/jem.20121239. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...