Phytohormone Profiling across the Bryophytes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25974061
PubMed Central
PMC4431756
DOI
10.1371/journal.pone.0125411
PII: PONE-D-15-03776
Knihovny.cz E-zdroje
- MeSH
- Bryophyta klasifikace metabolismus MeSH
- cyklopentany analýza metabolismus MeSH
- cytokininy analýza metabolismus MeSH
- fylogeneze MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- kyselina abscisová analýza metabolismus MeSH
- kyselina salicylová analýza metabolismus MeSH
- kyseliny indoloctové analýza metabolismus MeSH
- oxindoly MeSH
- oxylipiny analýza metabolismus MeSH
- regulátory růstu rostlin analýza metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-oxindole-3-acetic acid MeSH Prohlížeč
- cyklopentany MeSH
- cytokininy MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- oxindoly MeSH
- oxylipiny MeSH
- regulátory růstu rostlin MeSH
BACKGROUND: Bryophytes represent a very diverse group of non-vascular plants such as mosses, liverworts and hornworts and the oldest extant lineage of land plants. Determination of endogenous phytohormone profiles in bryophytes can provide substantial information about early land plant evolution. In this study, we screened thirty bryophyte species including six liverworts and twenty-four mosses for their phytohormone profiles in order to relate the hormonome with phylogeny in the plant kingdom. METHODOLOGY: Samples belonging to nine orders (Pelliales, Jungermanniales, Porellales, Sphagnales, Tetraphidales, Polytrichales, Dicranales, Bryales, Hypnales) were collected in Central and Northern Bohemia. The phytohormone content was analysed with a high performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS). PRINCIPAL FINDINGS: As revealed for growth hormones, some common traits such as weak conjugation of both cytokinins and auxins, intensive production of cisZ-type cytokinins and strong oxidative degradation of auxins with abundance of a major primary catabolite 2-oxindole-3-acetic acid were pronounced in all bryophytes. Whereas apparent dissimilarities in growth hormones profiles between liverworts and mosses were evident, no obvious trends in stress hormone levels (abscisic acid, jasmonic acid, salicylic acid) were found with respect to the phylogeny. CONCLUSION: The apparent differences in conjugation and/or degradation strategies of growth hormones between liverworts and mosses might potentially show a hidden link between vascular plants and liverworts. On the other hand, the complement of stress hormones in bryophytes probably correlate rather with prevailing environmental conditions and plant survival strategy than with plant evolution.
Zobrazit více v PubMed
Cox CJ, Goffinet B, Newton AE, Shaw AJ, Hedderson TA. 2000. Phylogenetic relationships among the diplolepideous-alternate mosses (Bryidae) inferred from nuclear and chloroplast DNA sequences. The Bryologist 103: 224–240.
Lewis LA, McCourt RM. 2004. Green algae and the origin of land plants. American Journal of Botany 91: 1535–1556. 10.3732/ajb.91.10.1535 PubMed DOI
Qiu Y-L, Li L, Wang B, Chen Z, Dombrovska O, Lee J, et al. 2007. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. International Journal of Plant Sciences 168: 691–708.
Chang Y, Graham SW. 2011. Inferring the higher-order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set. American Journal of Botany 98: 839–849. 10.3732/ajb.0900384 PubMed DOI
Shaw J, Renzaglia C. 2004. Phylogeny and diversification of bryophytes. American Journal of Botany 91: 1557–1581. 10.3732/ajb.91.10.1557 PubMed DOI
Davis EC. 2004. A molecular phylogeny of leafy liverworts (Jungermanniidae: Marchantiophyta). Monographs in Systematic Botany Missouri Botanical Garden 98: 61–86.
Groth-Malonek M, Knoop V. 2005. Bryophytes and other basal land plants: the mitochondrial perspective. Taxon 54: 293–297.
Bopp M. 1990. Hormones of the moss protonema In: Chopra RN, Bhatla SC (eds.) Bryophyte Development: Physiology and Biochemistry. CRC Press, Boca Raton, FL, pp 55–77.
Decker EL, Frank W, Sarnighausen E, Reski R. 2006. Moss systems biology en route: phytohormones in Physcomitrella developoment. Plant Biology 8: 397–406. PubMed
von Schwartzenberg K. 2009. Hormonal regulation of development by auxin and cytokinin in moss. Annual Plant Reviews 36: 246–281.
Sabovljević M, Vujičić M, Sabovljević A. 2014. Plant growth regulators in bryophytes. Botanica Serbica 38: 99–107.
Davies PJ. 2004. The plant hormones: their nature, occurrence, and functions In: Davies PJ (ed) Plant Hormones. Biosynthesis, Signal Transduction, Action! Kluwer Academic Publishers, Dordrecht Boston London, pp 1–15.
Auer CA. 1997. Cytokinin conjugation: recent advances and patterns in plant evolution. Plant Growth Regulation 23: 17–32.
Tarakhovskaya ER, Maslov YuI, Shishova MF. 2007. Phytohormones in algae. Russian Journal of Plant Physiology 54: 163–170.
Johri MM. 2008. Hormonal regulation in green plant lineage families. Physiology and Molecular Biology of Plants 14: 23–28. 10.1007/s12298-008-0003-5 PubMed DOI PMC
Stirk W, van Staden J. 2010. Flow of cytokinins through the environment 62: 101–116.
Ludwig-Müller J. 2011. Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany 62: 1757–1773. 10.1093/jxb/erq412 PubMed DOI
Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, et al. 2008. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64–69. PubMed
Dobrev PI, Vaňková R. 2012. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues In: Shabala S, Cuin TA (eds) Plant Salt Tolerance: Methods and Protocols, Methods in Molecular Biology, vol. 913 Humana Press, Springer Science + Business Media, New York Heidelberg Dordrecht London, pp 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI
Djilianov DL, Dobrev PI, Moyankova DP, Vankova R, Georgieva DT, Gajdosova S, et al. 2013. Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis . Journal of Plant Growth Regulation 32: 564–574.
Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E. 2000. Purine cytokinins: a proposal of abbreviations. Plant Growth Regulation 32: 253–256.
Bajguz A, Piotrowska A. 2009. Conjugates of auxin and cytokinin. Phytochemistry 70: 957–969. 10.1016/j.phytochem.2009.05.006 PubMed DOI
von Schwartzenberg K. 2006. Moss biology and phytohormones—Cytokinins in Physcomitrella . Plant Biology 8: 382–388. PubMed
Cho SH, von Schwartzenberg K, Quatrano R. 2009. The role of abscisic acid in stress tolerance. Annual Plant Reviews 36: 282–297.
Bopp M. 1990. Hormones in the moss protonema In: Chopra RN, Bhatla SC (eds.) Bryophyte Development: Physiology and Biochemistry. CRC Press, Boca Raton, FL, pp 55–77.
von Schwartzenberg K, Fernández Núñez M, Blaschke H, Dobrev PI, Novák O, Motyka V, et al. 2007. Cytokinins in the bryophyte Physcomitrella patens: Analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiology 145: 786–800. PubMed PMC
Yevdakova NA, Motyka V, Malbeck J, Trávníčková A, Novák O, Strnad M, et al. 2008. Evidence for importance of tRNA-dependent cytokinin biosynthetic pathway in the moss Physcomitrella patens . Journal of Plant Growth Regulation 27: 271–281.
Lindner A-C, Lang D, Seifert M, Podlešáková K, Novák O, Strnad M, et al. 2014. Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. Journal of Experimental Botany 65: 2533–2543. 10.1093/jxb/eru142 PubMed DOI PMC
Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, et al. 2011. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany 62: 2827–2840. 10.1093/jxb/erq457 PubMed DOI
Atzorn R, Bopp M. 1992. Cytokinins: Production and their localization in moss mutants, as determined by enzyme immunoassay and immunocytochemistry In: Kamínek M, Mok DWS, Zažímalová E (eds.) Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishing, The Hague, pp 215–218.
Schulz P, Reski R, Maldiney R, Laloue M, von Schwartzenberg K. 2000. Kinetics of cytokinin production and bud formation in Physcomitrella: Analysis of wild type, a developmental mutant and two of its ipt transgenics. Journal of Plant Physiology 156: 768–774.
Vaňková R. 1999. Cytokinin glycoconjugates—distribution, metabolism and function In: Strnad M, Peč P, Beck E (eds) Advances in Regulation of Plant Growth and Development. Peres Publishers, Prague, pp 67–78.
Spíchal L. 2012. Cytokinins—recent news and views of evolutionally old molecules. Functional Plant Biology 39: 267–284. PubMed
Gerhäuser D, Bopp M. 1990. Cytokinin oxidases in mosses. 2. Metabolism of kinetin and benzyladenine in vitro. Journal of Plant Physiology 135: 714–718.
Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, et al. 2003. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. Proceedings of the National Academy of Sciences of the USA 100: 8007–8012. PubMed PMC
Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, et al. 2009. The evolution of nuclear auxin signalling. BMC Evolutionary Biology 9: 126 10.1186/1471-2148-9-126 PubMed DOI PMC
Ashton NW, Schulze A, Hall P, Bandurski RS. 1985. Estimation of indole-3-acetic-acid in gamethophytes of the moss Physcomitrella patens . Planta 164: 142–144. 10.1007/BF00391040 PubMed DOI
Sztein AE, Cohen JD, de la Fuente IG, Cooke TJ. 1999. Auxin metabolism in mosses and liverworts. American Journal of Botany 86: 1544–1555. PubMed
Ludwig-Müller J, Jülke S, Bierfreund NM, Decker EL, Reski R. 2008. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. Ew Phytologist 181: 323–338. PubMed
Novák O, Hényková E, Sairanen I, Kowalzczyk M, Pospíšil T, Ljung K. 2012. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant Journal 72: 523–536. 10.1111/j.1365-313X.2012.05085.x PubMed DOI
Pěnčík A, Simonovik B, Petersson SV, Henyková E, Simon S, Greenham K, et al. 2013. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. The Plant Cell 25: 3858–3870. 10.1105/tpc.113.114421 PubMed DOI PMC
Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development 140: 943–950. 10.1242/dev.086363 PubMed DOI
Sztein AE, Cohen JD, Cooke TJ. 2000. Evolutionary patterns in the auxin metabolism of green plants. International Journal of Plant Sciences 161: 849–859.
Cooke TJ, Poli DB, Sztein AE, Cohen JD. 2002. Evolutionary patterns in auxin action. Plant Molecular Biology 49: 319–338. PubMed
Stirk W, Őrdőg V, Novák O, Rolčík J, Strnad M, Bálint P, et al. 2013. Auxin and cytokinin relationships in 24 microalgal strains. Journal of Phycology 49: 459–467. PubMed
Stirk W, van Staden J. 2014. Plant growth regulators in seaweeds: Occurence, regulation and functions In: Jacquot JP, Gadal P, Bourgougnon N (eds) Advances in Botanical Research: vol. 71. Sea plants. Academic Press, Elsevier Ltd, pp 125–160.
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al. 2013. Phylotranscriptomic analysis of the origin and early diversification of land plants. PNAS 111(45): E4859–68. 10.1073/pnas.1323926111 PubMed DOI PMC
Sacchettini JC, Poulter CD. 1997. Creating isoprenoid diversity. Science 277: 1788–1789. PubMed
Verpoorte R, Alfermann AW. 2000. Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, Dordrecht, pp 1–286.
Asakawa Y. 1995. Chemical constituents of the bryophytes In: Herz W, Kirby WB, Moore RE, Steglich W, Tamm C (Eds.) Progress in the Chemistry of Organic Natural Products. Springer, Wien, New York:
Adam KP, Crock J, Croteau R. 1996. Partial purification and characterization of a monoterpene cyclase, limonene synthase, from the liverwort Ricciocarpos natans . Archives of Biochemistry and Biophysics 332: 352–356. PubMed
Adam KP, Croteau R. 1998. Monoterpene biosynthesis in the liverwort Conocephalum conicum: demonstration of sabinene synthase and bornyl diphosphate synthase. Phytochemistry 49: 475–480. PubMed
Suire C, Bouvier F, Backhaus RA, Bégu D, Bonneu M, Camara B. 2000. Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiology 124: 971–978. PubMed PMC
Duckett JG, Ligrone R. 1995. The formation of catenate foliar gemmae and the origin of oil bodies in the liverwort Odontoschisma denudatum (Mart.) Dum. (Jungermanniales): a light and electron microscope study. Annals of Botany 76: 405–419.
Alaba S, Piszczalka P, Pietrykowska H, Pacak AM, Sierocka I, Nuc PW, et al. 2014. The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants. New Phytol. 10.1111/nph.13220 [Epub ahead of print] PubMed DOI PMC
Phytohormone profiling in an evolutionary framework
High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing
Hormonome Dynamics During Microgametogenesis in Different Nicotiana Species
Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao
Cytokinin N-glucosides: Occurrence, Metabolism and Biological Activities in Plants
New Insights Into the Metabolism and Role of Cytokinin N-Glucosides in Plants
trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana
A bacterial assay for rapid screening of IAA catabolic enzymes
Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics
Control of cytokinin and auxin homeostasis in cyanobacteria and algae