Phytohormone profiling in an evolutionary framework
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
393422
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
G082421N
Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
PubMed
38719800
PubMed Central
PMC11079000
DOI
10.1038/s41467-024-47753-z
PII: 10.1038/s41467-024-47753-z
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- Chlorophyta metabolismus genetika MeSH
- cyklopentany metabolismus MeSH
- cytokininy * metabolismus MeSH
- ethyleny metabolismus MeSH
- fylogeneze * MeSH
- kyselina abscisová metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové * metabolismus MeSH
- oxylipiny metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin * metabolismus MeSH
- signální transdukce MeSH
- Viridiplantae metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- cytokininy * MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové * MeSH
- oxylipiny MeSH
- regulátory růstu rostlin * MeSH
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.
Department of Experimental Plant Biology Charles University Viničná 5 128 44 Prague 2 Czechia
Laboratory of Functional Plant Biology Ghent University K L Ledeganckstraat 35 B 9000 Ghent Belgium
Zobrazit více v PubMed
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. The origin and early evolution of plants. Trends Plant Sci. 2023;28:312–329. doi: 10.1016/j.tplants.2022.09.009. PubMed DOI
Delwiche, C. F. The genomes of charophyte green algae. Adv. Bot. Res. 78, 255–270 (2016).
Davies, P. J. The plant hormones: their nature, occurrence, and functions. In: Plant hormones 1–15 (Springer Netherlands, 2010). 10.1007/978-1-4020-2686-7_1.
Bowman JL, Briginshaw LN, Fisher TJ, Flores-Sandoval E. Something ancient and something neofunctionalized—evolution of land plant hormone signaling pathways. Curr. Opin. Plant Biol. 2019;47:64–72. doi: 10.1016/j.pbi.2018.09.009. PubMed DOI
Jia X, et al. The origin and evolution of salicylic acid signaling and biosynthesis in plants. Mol. Plant. 2023;16:245–259. doi: 10.1016/j.molp.2022.12.002. PubMed DOI
Rieseberg TP, et al. Crossroads in the evolution of plant specialized metabolism. Semin. Cell Dev. Biol. 2023;134:37–58. doi: 10.1016/j.semcdb.2022.03.004. PubMed DOI
Hernández-García J, Briones-Moreno A, Blázquez MA. Origin and evolution of gibberellin signaling and metabolism in plants. Semin. Cell Dev. Biol. 2021;109:46–54. doi: 10.1016/j.semcdb.2020.04.009. PubMed DOI
Kyozuka J, Nomura T, Shimamura M. Origins and evolution of the dual functions of strigolactones as rhizosphere signaling molecules and plant hormones. Curr. Opin. Plant Biol. 2022;65:102154. doi: 10.1016/j.pbi.2021.102154. PubMed DOI
Zheng B, et al. Evolutionary analysis and functional identification of ancient brassinosteroid receptors in Ceratopteris richardii. Int. J. Mol. Sci. 2022;23:6795. doi: 10.3390/ijms23126795. PubMed DOI PMC
Dabravolski SA, Isayenkov SV. Evolution of the cytokinin dehydrogenase (CKX) domain. J. Mol. Evol. 2021;89:665–677. doi: 10.1007/s00239-021-10035-z. PubMed DOI
Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. Plant Biotechnol. J. 2022;20:625–645. doi: 10.1111/pbi.13783. PubMed DOI PMC
Powell AE, Heyl A. The origin and early evolution of cytokinin signaling. Front. Plant Sci. 2023;14:1142748. doi: 10.3389/fpls.2023.1142748. PubMed DOI PMC
Bowman JL, Flores Sandoval E, Kato H. On the evolutionary origins of land plant auxin biology. Cold Spring Harb. Perspect. Biol. 2021;13:a040048. doi: 10.1101/cshperspect.a040048. PubMed DOI PMC
Li D, Mou W, Van de Poel B, Chang C. Something old, something new: conservation of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid as a signaling molecule. Curr. Opin. Plant Biol. 2022;65:102116. doi: 10.1016/j.pbi.2021.102116. PubMed DOI
Chini A, Monte I, Zamarreño AM, García‐Mina JM, Solano R. Evolution of the jasmonate ligands and their biosynthetic pathways. N. Phytol. 2023;238:2236–2246. doi: 10.1111/nph.18891. PubMed DOI
Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI. Hormones and hormone-like substances of microorganisms: a review. Appl. Biochem. Microbiol. 2006;42:229–235. doi: 10.1134/S000368380603001X. PubMed DOI
Morrison EN, et al. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia. 2015;107:245–257. doi: 10.3852/14-157. PubMed DOI
Žižková E, et al. Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann. Bot. 2017;119:151–166. doi: 10.1093/aob/mcw194. PubMed DOI PMC
Stirk WA, van Staden J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol. Adv. 2020;44:107612. doi: 10.1016/j.biotechadv.2020.107612. PubMed DOI
Koeduka T, et al. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta. 2015;242:1175–1186. doi: 10.1007/s00425-015-2355-8. PubMed DOI
Gachet MS, Schubert A, Calarco S, Boccard J, Gertsch J. Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom. Sci. Rep. 2017;7:41177. doi: 10.1038/srep41177. PubMed DOI PMC
Tietz A, Ruttkowski U, Kohler R, Kasprik W. Further investigations on the occurrence and the effects of abscisic acid in algae. Biochem. Physiol. Pflanz. 1989;184:259–266. doi: 10.1016/S0015-3796(89)80011-3. DOI
Sztein AE, Cohen JD, Cooke TJ. Evolutionary patterns in the auxin metabolism of green plants. Int. J. Plant Sci. 2000;161:849–859. doi: 10.1086/317566. DOI
Delaux PM, et al. Origin of strigolactones in the green lineage. N. Phytol. 2012;195:857–871. doi: 10.1111/j.1469-8137.2012.04209.x. PubMed DOI
Stirk WA, et al. Auxin and cytokinin relationships in 24 microalgal strains. J. Phycol. 2013;49:459–467. doi: 10.1111/jpy.12061. PubMed DOI
Hackenberg D, Pandey S. Heterotrimeric G-proteins in green algae. Plant Signal. Behav. 2014;9:e28457. doi: 10.4161/psb.28457. PubMed DOI PMC
Hori K, et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 2014;5:3978. doi: 10.1038/ncomms4978. PubMed DOI PMC
Beilby MJ, Turi CE, Baker TC, Tymm FJM, Murch SJ. Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown) Plant Signal. Behav. 2015;10:e1082697. doi: 10.1080/15592324.2015.1082697. PubMed DOI PMC
Ju C, et al. Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat. Plants. 2015;1:1–24. doi: 10.1038/nplants.2014.4. PubMed DOI
Tietz A, Kasprik W. Identification of abscisic acid in a green alga. Biochem. Physiol. Pflanz. 1986;181:269–274. doi: 10.1016/S0015-3796(86)80093-2. DOI
Yamamoto Y, et al. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry. 2015;116:48–56. doi: 10.1016/j.phytochem.2015.03.008. PubMed DOI
Monte I, et al. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat. Chem. Biol. 2018;14:480–488. doi: 10.1038/s41589-018-0033-4. PubMed DOI
Wang S, et al. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat. Plants. 2020;6:95–106. doi: 10.1038/s41477-019-0560-3. PubMed DOI PMC
Haig D. Coleochaete and the origin of sporophytes. Am. J. Bot. 2015;102:417–422. doi: 10.3732/ajb.1400526. PubMed DOI
Cook SD. An historical review of phenylacetic acid. Plant Cell Physiol. 2019;60:243–254. doi: 10.1093/pcp/pcz004. PubMed DOI
Widhalm JR, Dudareva N. A familiar ring to it: biosynthesis of plant benzoic acids. Mol. Plant. 2015;8:83–97. doi: 10.1016/j.molp.2014.12.001. PubMed DOI
Kaźmierczak A, Stepiński D. GA3 content in young and mature antheridia of Chara tomentosa estimated by capillary electrophoresis. Folia Histochem. Cytobiol. 2005;43:65–67. PubMed
Hirano K, et al. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte selaginella moellendorffii but not in the bryophyte physcomitrella patens. Plant Cell. 2007;19:3058–3079. doi: 10.1105/tpc.107.051524. PubMed DOI PMC
Stirk WA, et al. Hormone profiles in microalgae: Gibberellins and brassinosteroids. Plant Physiol. Biochem. 2013;70:348–353. doi: 10.1016/j.plaphy.2013.05.037. PubMed DOI
Bajguz A. Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae) J. Plant Physiol. 2009;166:1946–1949. doi: 10.1016/j.jplph.2009.05.003. PubMed DOI
Proust H, et al. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development. 2011;138:1531–1539. doi: 10.1242/dev.058495. PubMed DOI
Hartung W. The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct. Plant Biol. 2010;37:806. doi: 10.1071/FP10058. DOI
Vosolsobě S, Skokan R, Petrášek J. The evolutionary origins of auxin transport: what we know and what we need to know. J. Exp. Bot. 2020;71:3287–3295. doi: 10.1093/jxb/eraa169. PubMed DOI
Evans LV, Trewavas AJ. Is algal development controlled by plant growth substances? J. Phycol. 1991;27:322–326. doi: 10.1111/j.0022-3646.1991.00322.x. DOI
Monte I, et al. An ancient COI1-independent function for reactive electrophilic oxylipins in thermotolerance. Curr. Biol. 2020;30:962–971.e3. doi: 10.1016/j.cub.2020.01.023. PubMed DOI
Záveská Drábková L, Dobrev PI, Motyka V. Phytohormone profiling across the bryophytes. PLoS One. 2015;10:e0125411. doi: 10.1371/journal.pone.0125411. PubMed DOI PMC
Lu Y, et al. Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga N annochloropsis oceanica expand the evolutionary breadth of phytohormone function. Plant J. 2014;80:52–68. doi: 10.1111/tpj.12615. PubMed DOI
Noble A, Kisiala A, Galer A, Clysdale D, Emery RJN. Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur. J. Phycol. 2014;49:244–254. doi: 10.1080/09670262.2014.911353. DOI
Pichler G, et al. Abundance and extracellular release of phytohormones in aero‐terrestrial microalgae (Trebouxiophyceae, Chlorophyta) as a potential chemical signaling source 1. J. Phycol. 2020;56:1295–1307. doi: 10.1111/jpy.13032. PubMed DOI PMC
Stirk WA, van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62:101–116. doi: 10.1007/s10725-010-9481-x. DOI
Maršálek B, Zahradníčková H, Hronková M. Extracellular production of abscisic acid by soil algae under salt, acid or drought stress. Z. f.ür. Naturforsch. C. 1992;47:701–704. doi: 10.1515/znc-1992-9-1011. DOI
Mazur H, Konop A, Synak R. Indole-3-acetic acid in the culture medium of two axenic green microalgae. J. Appl. Phycol. 2001;13:35–42. doi: 10.1023/A:1008199409953. DOI
Prieto CRE, Cordoba CNM, Montenegro JAM, González-Mariño GE. Production of indole-3-acetic acid in the culture medium of microalga Scenedesmus obliquus (UTEX 393) J. Braz. Chem. Soc. 2011;22:2355–2361. doi: 10.1590/S0103-50532011001200017. DOI
Khasin M, Cahoon RR, Nickerson KW, Riekhof WR. Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230. PLoS One. 2018;13:e0205227. doi: 10.1371/journal.pone.0205227. PubMed DOI PMC
Bennett T. PIN proteins and the evolution of plant development. Trends Plant Sci. 2015;20:498–507. doi: 10.1016/j.tplants.2015.05.005. PubMed DOI
Skokan R, et al. PIN-driven auxin transport emerged early in streptophyte evolution. Nat. Plants. 2019;5:1114–1119. doi: 10.1038/s41477-019-0542-5. PubMed DOI
Yokoya NS, et al. Endogenous cytokinins, auxins, and abscisic acid in red algae from brazil 1. J. Phycol. 2010;46:1198–1205. doi: 10.1111/j.1529-8817.2010.00898.x. DOI
Sabeena Farvin KH, Jacobsen C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013;138:1670–1681. doi: 10.1016/j.foodchem.2012.10.078. PubMed DOI
Hou S, Lin L, Lv Y, Xu N, Sun X. Responses of lipoxygenase, jasmonic acid, and salicylic acid to temperature and exogenous phytohormone treatments in Gracilariopsis lemaneiformis (Rhodophyta) J. Appl. Phycol. 2018;30:3387–3394. doi: 10.1007/s10811-018-1514-2. DOI
Beyer SF, et al. Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Sci. Rep. 2021;11:20600. doi: 10.1038/s41598-021-00209-6. PubMed DOI PMC
Spaepen S, Vanderleyden J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011;3:a001438–a001438. doi: 10.1101/cshperspect.a001438. PubMed DOI PMC
Lievens L, Pollier J, Goossens A, Beyaert R, Staal J. Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 2017;8:587. doi: 10.3389/fpls.2017.00587. PubMed DOI PMC
Frébortová J, Frébort I. Biochemical and structural aspects of cytokinin biosynthesis and degradation in bacteria. Microorganisms. 2021;9:1314. doi: 10.3390/microorganisms9061314. PubMed DOI PMC
Rashotte AM. The evolution of cytokinin signaling and its role in development before Angiosperms. Semin. Cell Dev. Biol. 2021;109:31–38. doi: 10.1016/j.semcdb.2020.06.010. PubMed DOI
Hluska T, Hlusková L, Emery RJN. The hulks and the deadpools of the cytokinin universe: a dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules. 2021;11:209. doi: 10.3390/biom11020209. PubMed DOI PMC
Lu Y, Xu J. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 2015;20:273–282. doi: 10.1016/j.tplants.2015.01.006. PubMed DOI
Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y. Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation. 2018;4:25. doi: 10.3390/fermentation4020025. DOI
Ashton NW, Grimsley NH, Cove DJ. Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta. 1979;144:427–435. doi: 10.1007/BF00380118. PubMed DOI
Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP. Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr. Biol. 2007;17:1225–1230. doi: 10.1016/j.cub.2007.06.037. PubMed DOI
Lavy M, et al. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. Elife. 2016;5:e13325. doi: 10.7554/eLife.13325. PubMed DOI PMC
Jahan A, et al. Archetypal roles of an abscisic acid receptor in drought and sugar responses in liverworts. Plant Physiol. 2019;179:317–328. doi: 10.1104/pp.18.00761. PubMed DOI PMC
Suzuki H, Kato H, Iwano M, Nishihama R, Kohchi T. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. Plant Cell. 2023;35:1058–1075. doi: 10.1093/plcell/koac367. PubMed DOI PMC
Klambt D, Knauth B, Dittmann I. Auxin dependent growth of rhizoids of Chara globularis. Physiol. Plant. 1992;85:537–540. doi: 10.1111/j.1399-3054.1992.tb05823.x. DOI
Sederias J, Colman B. The interaction of light and low temperature on breaking the dormancy of Chara vulgaris oospores. Aquat. Bot. 2007;87:229–234. doi: 10.1016/j.aquabot.2007.06.008. DOI
Nagao M, Matsui K, Uemura M. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant. Cell Environ. 2008;31:872–885. doi: 10.1111/j.1365-3040.2008.01804.x. PubMed DOI
Ohtaka K, Hori K, Kanno Y, Seo M, Ohta H. Primitive auxin response without TIR1 and Aux/IAA in the charophyte alga Klebsormidium nitens. Plant Physiol. 2017;174:1621–1632. doi: 10.1104/pp.17.00274. PubMed DOI PMC
Mutte SK, et al. Origin and evolution of the nuclear auxin response system. Elife. 2018;7:25. doi: 10.7554/eLife.33399. PubMed DOI PMC
Sun Y, et al. A ligand-independent origin of abscisic acid perception. Proc. Natl Acad. Sci. 2019;116:24892–24899. doi: 10.1073/pnas.1914480116. PubMed DOI PMC
de Vries J, et al. Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. Plant J. 2020;103:1025–1048. doi: 10.1111/tpj.14782. PubMed DOI
Kuhn A, et al. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. 2024;187:130–148.e17. doi: 10.1016/j.cell.2023.11.021. PubMed DOI PMC
Le Bail A, et al. Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol. 2010;153:128–144. doi: 10.1104/pp.109.149708. PubMed DOI PMC
Seegobin M, et al. Canis familiaris tissues are characterized by different profiles of cytokinins typical of the tRNA degradation pathway. FASEB J. 2018;32:6575–6581. doi: 10.1096/fj.201800347. PubMed DOI
Aoki MM, et al. Phytohormone metabolism in human cells: cytokinins are taken up and interconverted in HeLa cell culture. FASEB BioAdv. 2019;1:320–331. doi: 10.1096/fba.2018-00032. PubMed DOI PMC
Gibb M, Kisiala AB, Morrison EN, Emery RJN. The origins and roles of methylthiolated cytokinins: evidence from among life kingdoms. Front. Cell Dev. Biol. 2020;8:605672. doi: 10.3389/fcell.2020.605672. PubMed DOI PMC
Liu H, et al. Non-target metabolomics reveals the changes of small molecular substances in duck breast meat under different preservation time. Food Res. Int. 2022;161:111859. doi: 10.1016/j.foodres.2022.111859. PubMed DOI
Hirsch R, Hartung W, Gimmler H. Abscisic acid content of algae under stress. Bot. Acta. 1989;102:326–334. doi: 10.1111/j.1438-8677.1989.tb00113.x. DOI
Xu Y, Harvey PJ. Carotenoid production by dunaliella salina under red light. Antioxidants. 2019;8:123. doi: 10.3390/antiox8050123. PubMed DOI PMC
Sun Y, Pri-Tal O, Michaeli D, Mosquna A. Evolution of abscisic acid signaling module and its perception. Front. Plant Sci. 2020;11:934. doi: 10.3389/fpls.2020.00934. PubMed DOI PMC
Müller A, Düchting P, Weiler E. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta. 2002;216:44–56. doi: 10.1007/s00425-002-0866-6. PubMed DOI
Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J. Chromatogr. A. 2005;1075:159–166. doi: 10.1016/j.chroma.2005.02.091. PubMed DOI
Skalák J, et al. Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. Plant J. 2019;97:805–824. doi: 10.1111/tpj.14285. PubMed DOI
Mboene Noah A, et al. Dynamics of auxin and cytokinin metabolism during early root and hypocotyl growth in theobroma cacao. Plants. 2021;10:967. doi: 10.3390/plants10050967. PubMed DOI PMC
Cove DJ, et al. The moss physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harb. Protoc. 2009;2009:pdb.emo115. doi: 10.1101/pdb.emo115. PubMed DOI
Vandenbussche F, Vaseva I, Vissenberg K, Van Der Straeten D. Ethylene in vegetative development: a tale with a riddle. N. Phytol. 2012;194:895–909. doi: 10.1111/j.1469-8137.2012.04100.x. PubMed DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI
Lenth, R. V. et al. emmeans: estimated marginal means, aka least-squares means. https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (2023).