RAF-like protein kinases mediate a deeply conserved, rapid auxin response
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38128538
PubMed Central
PMC10783624
DOI
10.1016/j.cell.2023.11.021
PII: S0092-8674(23)01275-8
Knihovny.cz E-zdroje
- Klíčová slova
- RAF kinase, auxin, plant evolution, protein phosphorylation,
- MeSH
- Arabidopsis genetika metabolismus MeSH
- bílkoviny řas metabolismus MeSH
- fosforylace MeSH
- kyseliny indoloctové metabolismus MeSH
- proteinkinasy metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce * MeSH
- vyšší rostliny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bílkoviny řas MeSH
- kyseliny indoloctové MeSH
- proteinkinasy MeSH
- rostlinné proteiny MeSH
The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.
Department of Experimental Plant Biology Charles University Prague Czech Republic
Graduate School of Biostudies Kyoto University Kyoto Japan
Institute of Science and Technology Austria Klosterneuburg Austria
Laboratory of Biochemistry Wageningen University Stippeneng 4 Wageningen the Netherlands
Laboratory of Systems and Synthetic Biology Wageningen University Wageningen the Netherlands
Zobrazit více v PubMed
Friml J. Fourteen stations of auxin. Cold Spring Harb. Perspect. Biol. 2022;14:a039859. PubMed PMC
Friml J., Wiśniewska J., Benková E., Mendgen K., Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature. 2002;415:806–809. PubMed
Tao Y., Ferrer J.L., Ljung K., Pojer F., Hong F., Long J.A., Li L., Moreno J.E., Bowman M.E., Ivans L.J., et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–176. PubMed PMC
Went F.W., Thimann K.V. MacMillan Company; 1937. Phytohormones.
Went F.W. Wuchsstoff und Wachstum. Recl. Trav. Bot. Neerl. 1928;25:1–116.
Sessions R.A., Zambryski P.C. Arabidopsis gynoecium structure in the wild and in ettin mutants. Development. 1995;121:1519–1532. PubMed
Nemhauser J.L., Feldman L.J., Zambryski P.C. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development. 2000;127:3877–3888. PubMed
Scarpella E., Marcos D., Friml J., Berleth T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 2006;20:1015–1027. PubMed PMC
De Rybel B., Adibi M., Breda A.S., Wendrich J.R., Smit M.E., Novák O., Yamaguchi N., Yoshida S., Van Isterdael G., Palovaara J., et al. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science. 2014;345:1255215. PubMed
Morffy N., Strader L.C. Old Town Roads: routes of auxin biosynthesis across kingdoms. Curr. Opin. Plant Biol. 2020;55:21–27. PubMed PMC
Mutte S.K., Kato H., Rothfels C., Melkonian M., Wong G.K.-S., Weijers D. Origin and evolution of the nuclear auxin response system. eLife. 2018;7:e33399. PubMed PMC
Jin Q., Scherp P., Heimann K., Hasenstein K.H. Auxin and cytoskeletal organization in algae. Cell Biol. Int. 2008;32:542–545. PubMed
Ohtaka K., Hori K., Kanno Y., Seo M., Ohta H. Primitive auxin response without TIR1 and aux/IAA in the charophyte alga Klebsormidium nitens. Plant Physiol. 2017;174:1621–1632. PubMed PMC
Klämbt D., Knauth B., Dittmann I. Auxin dependent growth of rhizoids of Chara globularis. Physiol. Plant. 1992;85:537–540.
Wood N.L., Berliner M.D. Effects of indoleacetic acid on the desmid Micrasterias thomasiana. Plant Sci. Lett. 1979;16:285–289.
Etherton B. Effect of indole-3-acetic acid on membrane potentials of oat coleoptile cells. Plant Physiol. 1970;45:527–528. PubMed PMC
Bates G.W., Goldsmith M.H.M. Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids. Planta. 1983;159:231–237. PubMed
Serre N.B.C., Kralík D., Yun P., Slouka Z., Shabala S., Fendrych M. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants. 2021;7:1229–1238. PubMed PMC
Friml J., Gallei M., Gelová Z., Johnson A., Mazur E., Monzer A., Rodriguez L., Roosjen M., Verstraeten I., Živanović B.D., et al. ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature. 2022;609:575–581. PubMed
Ayling S., Clarkson D. The cytoplasmic streaming response of tomato root hairs to auxin; the role of calcium. Funct. Plant Biol. 1996;23:699.
Monshausen G.B., Miller N.D., Murphy A.S., Gilroy S. Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J. 2011;65:309–318. PubMed
Barbez E., Dünser K., Gaidora A., Lendl T., Busch W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2017;114:E4884–E4893. PubMed PMC
Shih H.W., DePew C.L., Miller N.D., Monshausen G.B. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr. Biol. 2015;25:3119–3125. PubMed
Li L., Verstraeten I., Roosjen M., Takahashi K., Rodriguez L., Merrin J., Chen J., Shabala L., Smet W., Ren H., et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature. 2021;599:273–277. PubMed PMC
Senn A.P., Goldsmith M.H.M. Regulation of electrogenic proton pumping by auxin and fusicoccin as related to the growth of Avena coleoptiles. Plant Physiol. 1988;88:131–138. PubMed PMC
Narasimhan M., Gallei M., Tan S., Johnson A., Verstraeten I., Li L., Rodriguez L., Han H., Himschoot E., Wang R., et al. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiol. 2021;186:1122–1142. PubMed PMC
Heisler M.G., Ohno C., Das P., Sieber P., Reddy G.V., Long J.A., Meyerowitz E.M. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 2005;15:1899–1911. PubMed
Dubrovsky J.G., Sauer M., Napsucialy-Mendivil S., Ivanchenko M.G., Friml J., Shishkova S., Celenza J., Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. USA. 2008;105:8790–8794. PubMed PMC
Reinhardt D., Pesce E.R., Stieger P., Mandel T., Baltensperger K., Bennett M., Traas J., Friml J., Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature. 2003;426:255–260. PubMed
Thimann K.V. Hormones and the analysis of growth. Plant Physiol. 1938;13:437–449. PubMed PMC
Kepinski S., Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435:446–451. PubMed
Dharmasiri N., Dharmasiri S., Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435:441–445. PubMed
Tan X., Calderon-Villalobos L.I.A., Sharon M., Zheng C., Robinson C.V., Estelle M., Zheng N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature. 2007;446:640–645. PubMed
Gray W.M., Kepinski S., Rouse D., Leyser O., Estelle M. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature. 2001;414:271–276. PubMed
Kim J., Harter K., Theologis A. Protein–protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci. USA. 1997;94:11786–11791. PubMed PMC
Weijers D., Wagner D. Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 2016;67:539–574. PubMed
Prigge M.J., Platre M., Kadakia N., Zhang Y., Greenham K., Szutu W., Pandey B.K., Bhosale R.A., Bennett M.J., Busch W., et al. Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife. 2020;9:e54740. PubMed PMC
Hamann T., Benkova E., Bäurle I., Kientz M., Jürgens G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 2002;16:1610–1615. PubMed PMC
Hardtke C.S., Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 1998;17:1405–1411. PubMed PMC
Kato H., Mutte S.K., Suzuki H., Crespo I., Das S., Radoeva T., Fontana M., Yoshitake Y., Hainiwa E., van den Berg W., et al. Design principles of a minimal auxin response system. Nat. Plants. 2020;6:473–482. PubMed
Abel S., Theologis A. Early genes and auxin action. Plant Physiol. 1996;111:9–17. PubMed PMC
McClure B.A., Hagen G., Brown C.S., Gee M.A., Guilfoyle T.J. Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell. 1989;1:229–239. PubMed PMC
Fendrych M., Akhmanova M., Merrin J., Glanc M., Hagihara S., Takahashi K., Uchida N., Torii K.U., Friml J. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants. 2018;4:453–459. PubMed PMC
Dindas J., Scherzer S., Roelfsema M.R.G., von Meyer K., Müller H.M., Al-Rasheid K.A.S., Palme K., Dietrich P., Becker D., Bennett M.J., et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat. Commun. 2018;9:1174. PubMed PMC
Serre N.B., Wernerova D., Vittal P., Dubey S.M., Medvecka E., Jelinkova A., Petrasek J., Grossmann G., Fendrych M. The AUX1-AFB1-CNGC14 module establishes longitudinal root surface pH profile. Elife. 2023;12:e85193. PubMed PMC
Dubey S.M., Han S., Stutzman N., Prigge M.J., Medvecká E., Platre M.P., Busch W., Fendrych M., Estelle M. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. Mol. Plant. 2023;16:1120–1130. PubMed PMC
Qi L., Kwiatkowski M., Chen H., Hoermayer L., Sinclair S., Zou M., del Genio C.I., Kubeš M.F., Napier R., Jaworski K., et al. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 2022;611:133–138. PubMed
Jin J., Pawson T. Modular evolution of phosphorylation-based signalling systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012;367:2540–2555. PubMed PMC
Nürnberger T., Brunner F., Kemmerling B., Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 2004;198:249–266. PubMed
Couto D., Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 2016;16:537–552. PubMed
Oyama M., Kozuka-Hata H., Tasaki S., Semba K., Hattori S., Sugano S., Inoue J., Yamamoto T. Temporal perturbation of tyrosine phosphoproteome dynamics reveals the system-wide regulatory networks. Mol. Cell. Proteomics. 2009;8:226–231. PubMed
Humphrey S.J., Azimifar S.B., Mann M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 2015;33:990–995. PubMed
Kinoshita T., Caño-Delgado A., Seto H., Hiranuma S., Fujioka S., Yoshida S., Chory J. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature. 2005;433:167–171. PubMed
Wang X., Kota U., He K., Blackburn K., Li J., Goshe M.B., Huber S.C., Clouse S.D. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell. 2008;15:220–235. PubMed
Ryu H., Kim K., Cho H., Park J., Choe S., Hwang I. Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell. 2007;19:2749–2762. PubMed PMC
Carrillo-Carrasco V.P., Hernandez-Garcia J., Mutte S.K., Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J. 2023;42:e113018. PubMed PMC
Ren H., Park M.Y., Spartz A.K., Wong J.H., Gray W.M. A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. PLoS Genet. 2018;14 PubMed PMC
Takahashi K., Hayashi K., Kinoshita T. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 2012;159:632–641. PubMed PMC
Renier M., Tamanini A., Nicolis E., Rolfini R., Imler J.L., Pavirani A., Cabrini G. Use of a membrane potential-sensitive probe to assess biological expression of the cystic fibrosis transmembrane conductance regulator. Hum. Gene Ther. 1995;6:1275–1283. PubMed
Tominaga M., Ito K. The molecular mechanism and physiological role of cytoplasmic streaming. Curr. Opin. Plant Biol. 2015;27:104–110. PubMed
Metzler R., Jeon J.H., Cherstvy A.G., Barkai E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014;16:24128–24164. PubMed
Regner B.M., Vučinić D., Domnisoru C., Bartol T.M., Hetzer M.W., Tartakovsky D.M., Sejnowski T.J. Anomalous diffusion of single particles in cytoplasm. Biophys. J. 2013;104:1652–1660. PubMed PMC
Yoon H.S., Hackett J.D., Ciniglia C., Pinto G., Bhattacharya D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 2004;21:809–818. PubMed
One Thousand Plant Transcriptomes Initiative One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–685. PubMed PMC
Jiao C., Sørensen I., Sun X., Sun H., Behar H., Alseekh S., Philippe G., Palacio Lopez K., Sun L., Reed R., et al. The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell. 2020;181:1097–1111.e12. PubMed
Kaur S., Peters T.J., Yang P., Luu L.D.W., Vuong J., Krycer J.R., O’Donoghue S.I. Temporal ordering of omics and multiomic events inferred from time-series data. NPJ Syst. Biol. Appl. 2020;6:22. PubMed PMC
Montes C., Wang P., Liao C.Y., Nolan T.M., Song G., Clark N.M., Elmore J.M., Guo H., Bassham D.C., Yin Y., et al. Integration of multi-omics data reveals interplay between brassinosteroid and target of rapamycin complex signaling in Arabidopsis. New Phytol. 2022;236:893–910. PubMed PMC
Lin Z., Li Y., Zhang Z., Liu X., Hsu C.C., Du Y., Sang T., Zhu C., Wang Y., Satheesh V., et al. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat. Commun. 2020;11:613. PubMed PMC
Sirichandra C., Davanture M., Turk B.E., Zivy M., Valot B., Leung J., Merlot S. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 Binding Site involved in its turnover. PLoS One. 2010;5 PubMed PMC
Weller B., Zourelidou M., Frank L., Barbosa I.C.R., Fastner A., Richter S., Jürgens G., Hammes U.Z., Schwechheimer C. Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth. Proc. Natl. Acad. Sci. USA. 2017;114:E887–E896. PubMed PMC
Songyang Z., Lu K.P., Kwon Y.T., Tsai L.H., Filhol O., Cochet C., Brickey D.A., Soderling T.R., Bartleson C., Graves D.J., et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol. 1996;16:6486–6493. PubMed PMC
Lewis T.S., Shapiro P.S., Ahn N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 1998;74:49–139. PubMed
Ichimura K., Ichimura K., Shinozaki K., Tena G., Sheen J., Henry Y., Champion A., Kreis M., Zhang S., Hirt H., et al. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 2002;7:301–308. PubMed
Shahzad Z., Canut M., Tournaire-Roux C., Martinière A., Boursiac Y., Loudet O., Maurel C. A potassium-dependent oxygen sensing pathway regulates plant root hydraulics. Cell. 2016;167:87–98.e14. PubMed
Koide E., Suetsugu N., Iwano M., Gotoh E., Nomura Y., Stolze S.C., Nakagami H., Kohchi T., Nishihama R. Regulation of photosynthetic carbohydrate metabolism by a Raf-like kinase in the liverwort Marchantia polymorpha. Plant Cell Physiol. 2020;61:631–643. PubMed
Bowman J.L., Kohchi T., Yamato K.T., Jenkins J., Shu S., Ishizaki K., Yamaoka S., Nishihama R., Nakamura Y., Berger F., et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 2017;171:287–304.e15. PubMed
Bienz M. Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends Biochem. Sci. 2014;39:487–495. PubMed
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602. PubMed
Flores-Sandoval E., Eklund D.M., Bowman J.L. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet. 2015;11 PubMed PMC
Soma F., Takahashi F., Suzuki T., Shinozaki K., Yamaguchi-Shinozaki K. Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nat. Commun. 2020;11:1373. PubMed PMC
Serre N.B.C., Wernerová D., Vittal P., Dubey S.M., Medvecká E., Jelínková A., Petrášek J., Grossmann G., Fendrych M. The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile. eLife. 2023;12:e85193. PubMed PMC
Tominaga M., Kimura A., Yokota E., Haraguchi T., Shimmen T., Yamamoto K., Nakano A., Ito K. Cytoplasmic streaming velocity as a plant size determinant. Dev. Cell. 2013;27:345–352. PubMed
Prokhnevsky A.I., Peremyslov V.V., Dolja V.V. Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc. Natl. Acad. Sci. USA. 2008;105:19744–19749. PubMed PMC
Peremyslov V.V., Cole R.A., Fowler J.E., Dolja V.V. Myosin-powered membrane compartment drives cytoplasmic streaming, cell expansion and plant development. PLoS One. 2015;10 PubMed PMC
Kurth E.G., Peremyslov V.V., Turner H.L., Makarova K.S., Iranzo J., Mekhedov S.L., Koonin E.V., Dolja V.V. Myosin-driven transport network in plants. Proc. Natl. Acad. Sci. USA. 2017;114:E1385–E1394. PubMed PMC
Zhang Y., Xiao Y., Du F., Cao L., Dong H., Ren H. Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. New Phytol. 2011;190:667–682. PubMed
Moscat J., Diaz-Meco M.T., Albert A., Campuzano S. Cell signaling and function organized by PB1 domain interactions. Mol. Cell. 2006;23:631–640. PubMed
Blagoev B., Ong S.E., Kratchmarova I., Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 2004;22:1139–1145. PubMed
Winston B.W., Lange-Carter C.A., Gardner A.M., Johnson G.L., Riches D.W. Tumor necrosis factor alpha rapidly activates the mitogen-activated protein kinase (MAPK) cascade in a MAPK kinase kinase-dependent, c-Raf-1-independent fashion in mouse macrophages. Proc. Natl. Acad. Sci. USA. 1995;92:1614–1618. PubMed PMC
Du M., Spalding E.P., Gray W.M. Rapid auxin-mediated cell expansion. Annu. Rev. Plant Biol. 2020;71:379–402. PubMed PMC
Kato H., Ishizaki K., Kouno M., Shirakawa M., Bowman J.L., Nishihama R., Kohchi T. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLoS Genet. 2015;11 PubMed PMC
Yu Y., Tang W., Lin W., Li W., Zhou X., Li Y., Chen R., Zheng R., Qin G., Cao W., et al. ABLs and TMKs are co-receptors for extracellular auxin. Cell. 2023;186:5457–5471. PubMed PMC
Khuri S., Bakker F.T., Dunwell J.M. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol. Biol. Evol. 2001;18:593–605. PubMed
Leontovyčová H., Trdá L., Dobrev P.I., Šašek V., Gay E., Balesdent M.H., Burketová L. Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1. Res. Microbiol. 2020;171:174–184. PubMed
Cox C.E., Brandl M.T., de Moraes M.H., Gunasekera S., Teplitski M. Production of the plant hormone auxin by Salmonella and its role in the interactions with plants and animals. Front. Microbiol. 2017;8:2668. PubMed PMC
Chanclud E., Morel J.B. Plant hormones: a fungal point of view. Mol. Plant Pathol. 2016;17:1289–1297. PubMed PMC
Rao R.P., Hunter A., Kashpur O., Normanly J. Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genetics. 2010;185:211–220. PubMed PMC
Le Bail A., Billoud B., Kowalczyk N., Kowalczyk M., Gicquel M., Le Panse S., Stewart S., Scornet D., Cock J.M., Ljung K., et al. Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol. 2010;153:128–144. PubMed PMC
Kunkel B.N., Harper C.P. The roles of auxin during interactions between bacterial plant pathogens and their hosts. J. Exp. Bot. 2018;69:245–254. PubMed
Stringlis I.A., Proietti S., Hickman R., Van Verk M.C., Zamioudis C., Pieterse C.M.J. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 2018;93:166–180. PubMed PMC
Amin S.A., Hmelo L.R., van Tol H.M., Durham B.P., Carlson L.T., Heal K.R., Morales R.L., Berthiaume C.T., Parker M.S., Djunaedi B., et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101. PubMed
Koncz C., Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 1986;204:383–396.
Deblaere R., Bytebier B., De Greve H., Deboeck F., Schell J., Van Montagu M., Leemans J. Efficient octopine Ti plasmid-derived vectors for Agrobacterium -mediated gene transfer to plants. Nucleic Acids Res. 1985;13:4777–4788. PubMed PMC
Nishiyama T., Hiwatashi Y., Sakakibara I., Kato M., Hasebe M. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res. 2000;7:9–17. PubMed
Domozych D.S., Sørensen I., Popper Z.A., Ochs J., Andreas A., Fangel J.U., Pielach A., Sacks C., Brechka H., Ruisi-Besares P., et al. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol. 2014;165:105–118. PubMed PMC
Ishizaki K., Chiyoda S., Yamato K.T., Kohchi T. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 2008;49:1084–1091. PubMed
Ashton N.W., Cove D.J. The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol. Gen. Genet. 1977;154:87–95.
Savaldi-Goldstein S., Baiga T.J., Pojer F., Dabi T., Butterfield C., Parry G., Santner A., Dharmasiri N., Tao Y., Estelle M., et al. New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery. Proc. Natl. Acad. Sci. USA. 2008;105:15190–15195. PubMed PMC
De Rybel B., van den Berg W., Lokerse A.S., Liao C.Y., van Mourik H., Möller B., Peris C.L., Weijers D. A versatile set of ligation-independent cloning vectors for functional studies in plants. Plant Physiol. 2011;156:1292–1299. PubMed PMC
Ishizaki K., Nishihama R., Ueda M., Inoue K., Ishida S., Nishimura Y., Shikanai T., Kohchi T. Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS One. 2015;10 PubMed PMC
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. PubMed
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. PubMed
Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update) Nucleic Acids Res. 2022;50:W216–W221. PubMed PMC
Supek F., Bošnjak M., Škunca N., Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6 PubMed PMC
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Emms D.M., Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. PubMed PMC
Serre N.B.C., Fendrych M. ACORBA: automated workflow to measure Arabidopsis thaliana root tip angle dynamics. Quant. Plant Biol. 2022;3:e9. PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
Kim D., Langmead B., Salzberg S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. PubMed PMC
Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M., et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. PubMed PMC
Liao Y., Smyth G.K., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. PubMed
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC
Nakamura T., Yamada K.D., Tomii K., Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics. 2018;34:2490–2492. PubMed PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. PubMed PMC
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. PubMed PMC
Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497.
Gamborg O.L., Miller R.A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968;50:151–158. PubMed
Cove D.J., Perroud P.F., Charron A.J., McDaniel S.F., Khandelwal A., Quatrano R.S. Culturing the moss Physcomitrella patens. Cold Spring Harb. Protoc. 2009;2009 PubMed
Kubota A., Ishizaki K., Hosaka M., Kohchi T. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci. Biotechnol. Biochem. 2013;77:167–172. PubMed
Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. PubMed
Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. PubMed PMC
Letunic I., Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. PubMed PMC
Gao Y., Kilfoil M.L. Accurate detection and complete tracking of large populations of features in three dimensions. Opt. Express. 2009;17:4685–4704. PubMed
Cheng C.Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S., Town C.D. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89:789–804. PubMed
Montgomery S.A., Tanizawa Y., Galik B., Wang N., Ito T., Mochizuki T., Akimcheva S., Bowman J.L., Cognat V., Maréchal-Drouard L., et al. Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr. Biol. 2020;30:573–588.e7. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC