Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis

. 2019 Jan ; 17 (1) : e3000098. [epub] 20190104

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30608924

Mitochondria originated from proteobacterial endosymbionts, and their transition to organelles was tightly linked to establishment of the protein import pathways. The initial import of most proteins is mediated by the translocase of the outer membrane (TOM). Although TOM is common to all forms of mitochondria, an unexpected diversity of subunits between eukaryotic lineages has been predicted. However, experimental knowledge is limited to a few organisms, and so far, it remains unsettled whether the triplet-pore or the twin-pore structure is the generic form of TOM complex. Here, we analysed the TOM complex in hydrogenosomes, a metabolically specialised anaerobic form of mitochondria found in the excavate Trichomonas vaginalis. We demonstrate that the highly divergent β-barrel T. vaginalis TOM (TvTom)40-2 forms a translocation channel to conduct hydrogenosomal protein import. TvTom40-2 is present in high molecular weight complexes, and their analysis revealed the presence of four tail-anchored (TA) proteins. Two of them, Tom36 and Tom46, with heat shock protein (Hsp)20 and tetratricopeptide repeat (TPR) domains, can bind hydrogenosomal preproteins and most likely function as receptors. A third subunit, Tom22-like protein, has a short cis domain and a conserved Tom22 transmembrane segment but lacks a trans domain. The fourth protein, hydrogenosomal outer membrane protein 19 (Homp19) has no known homology. Furthermore, our data indicate that TvTOM is associated with sorting and assembly machinery (Sam)50 that is involved in β-barrel assembly. Visualisation of TvTOM by electron microscopy revealed that it forms three pores and has an unconventional skull-like shape. Although TvTOM seems to lack Tom7, our phylogenetic profiling predicted Tom7 in free-living excavates. Collectively, our results suggest that the triplet-pore TOM complex, composed of three conserved subunits, was present in the last common eukaryotic ancestor (LECA), while receptors responsible for substrate binding evolved independently in different eukaryotic lineages.

Zobrazit více v PubMed

Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature. 2018;557: 101–105. 10.1038/s41586-018-0059-5 PubMed DOI

Timmis JN, Ayliff MA, Huang CY, Martin W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004;5: 123–135. 10.1038/nrg1271 PubMed DOI

Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science (80-). 2006;313: 314–318. 10.1126/science.1127895 PubMed DOI

Maćašev D, Whelan J, Newbigin E, Silva-Filho MC, Mulhern TD, Lithgow T. Tom22′, an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Mol Biol Evol. 2004;21: 1557–1564. 10.1093/molbev/msh166 PubMed DOI

Söllner T, Griffiths G, Pfaller R, Pfanner N, Neupert W. MOM19, an import receptor for mitochondrial precursor proteins. Cell. 1989;59: 1061–1070. PubMed

Söllner T, Pfaller R, Griffiths G, Pfanner N, Neupert W. A mitochondrial import receptor for the ADP/ATP carrier. Cell. 1990;62: 107–115. 10.1016/0092-8674(90)90244-9 PubMed DOI

Perry AJ, Hulett JM, Likić VA, Lithgow T, Gooley PR. Convergent evolution of receptors for protein import into mitochondria. Curr Biol. 2006;16: 221–229. 10.1016/j.cub.2005.12.034 PubMed DOI

Wojtkowska M, Buczek D, Stobienia O, Karachitos A, Antoniewicz M, Slocinska M, et al. The TOM complex of Amoebozoans: The cases of the amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. Protist. Elsevier GmbH.; 2015;166: 349–362. 10.1016/j.protis.2015.05.005 PubMed DOI

Makiuchi T, Mi-ichi F, Nakada-Tsukui K, Nozaki T. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci Rep. 2013;3: 1–7. 10.1038/srep01129 PubMed DOI PMC

Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, et al. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS ONE. 2011;6(9). e24428 10.1371/journal.pone.0024428 PubMed DOI PMC

Mani J, Desy S, Niemann M, Chanfon A, Oeljeklaus S, Pusnik M, et al. Mitochondrial protein import receptors in kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat Commun. 2015;6: 6646 10.1038/ncomms7646 PubMed DOI PMC

Fukasawa Y, Oda T, Tomii K, Imai K. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol Biol Evol. 2017;34: 1574–1586. 10.1093/molbev/msx096 PubMed DOI PMC

Pusnik M, Schmidt O, Perry AJ, Oeljeklaus S, Niemann M, Warscheid B, et al. Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr Biol. 2011;21: 1738–1743. 10.1016/j.cub.2011.08.060 PubMed DOI

Model K, Meisinger C, Kühlbrandt W. Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J Mol Biol. Elsevier Ltd; 2008;383: 1049–1057. 10.1016/j.jmb.2008.07.087 PubMed DOI

Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S, Kühlbrandt W. Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell. Elsevier; 2017;170: 693–700. 10.1016/j.cell.2017.07.012 PubMed DOI

Shiota T, Imai K, Qiu J, Hewitt VL, Tan K, Shen H-H, et al. Molecular architecture of the active mitochondrial protein gate. Science (80-). 2015;349: 1544–1548. 10.1126/science.aac6428 PubMed DOI

Qiu J, Wenz L-S, Zerbes RM, Oeljeklaus S, Bohnert M, Stroud DA, et al. Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell. Elsevier; 2013;154: 596–608. 10.1016/j.cell.2013.06.033 PubMed DOI

Wenz L-S, Ellenrieder L, Qiu J, Bohnert M, Zufall N, van der Laan M, et al. Sam37 is crucial for formation of the mitochondrial TOM–SAM supercomplex, thereby promoting β-barrel biogenesis. J Cell Biol. 2015;210: 1047–1054. Available from: http://jcb.rupress.org/content/210/7/1047.abstract 10.1083/jcb.201504119 PubMed DOI PMC

Shiota T, Mabuchi H, Tanaka-Yamano S, Yamano K, Endo T. In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proc Natl Acad Sci. 2011;108: 15179–15183. 10.1073/pnas.1105921108 PubMed DOI PMC

Künkele K, Heins S, Dembowski M, Nargang FE, Benz R, Thieffry M, et al. The preprotein translocation channel of the outer membrane of mitochondria. Cell. 1998;93: 1009–1019. 10.1016/S0092-8674(00)81206-4 PubMed DOI

Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440: 623–630. 10.1038/nature04546 PubMed DOI

Hrdy I, Tachezy J, Muller M. Metabolism of trichomonad hydrogenosomes In: Tachezy J, editor. Hydrogenosomes and Mitosomes:Mitochondria of Anaerobic Euakryotes. Berlin, Heidelberg: Springer-Verlag; 2008. pp. 114–145.

Clemens DL, Johnson PJ. Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol. 2000;106: 307–313. 10.1016/S0166-6851(99)00220-0 PubMed DOI

Bradley PJ, Lahti CJ, Plumper E, Johnson PJ. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: Similarities with mitochondrial protein import. EMBO J. 1997;16: 3484–3493. 10.1093/emboj/16.12.3484 PubMed DOI PMC

Rada P, Makki A, Zimorski V, Garg S, Hampl V, Hrdý I, et al. N-terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. J Eukaryot Cell. 2015;14: 1264–1275. PubMed PMC

Garg S, Stölting J, Zimorski V, Rada P, Tachezy J, Martin WF, et al. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol. 2015;7: 2716–2726. 10.1093/gbe/evv175 PubMed DOI PMC

Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plümper E, Martinez A, et al. Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem. 2003;278: 30548–30561. 10.1074/jbc.M304032200 PubMed DOI

Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science (80-). 2007;315: 207–212. 10.1126/science.1132894 PubMed DOI PMC

Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. Annual Reviews; 2017;86: 685–714. 10.1146/annurev-biochem-060815-014352 PubMed DOI

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics. 2014;30: 1236–1240. 10.1093/bioinformatics/btu031 PubMed DOI PMC

van Dooren GG, Yeoh LM, Striepen B, McFadden GI. The import of proteins into the mitochondrion of Toxoplasma gondii. J Biol Chem. 2016;291: 19335–19350. 10.1074/jbc.M116.725069 PubMed DOI PMC

Mani J, Rout S, Desy S, Schneider A. Mitochondrial protein import—Functional analysis of the highly diverged Tom22 orthologue of Trypanosoma brucei. Sci Rep. Nature Publishing Group; 2017;7: 40738 10.1038/srep40738 PubMed DOI PMC

Eilers M, Schatz G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature. 1986;322: 228–232. 10.1038/322228a0 PubMed DOI

Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.” Proc Natl Acad Sci. 2009;106: 3859–3864. Available from: http://www.pnas.org/content/106/10/3859.abstract 10.1073/pnas.0807880106 PubMed DOI PMC

Heiss AA, Kolisko M, Ekelund F, Brown MW, Roger AJ, Simpson AGB. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. R Soc Open Sci. The Royal Society Publishing; 2018;5: 171707 10.1098/rsos.171707 PubMed DOI PMC

Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, et al. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci. 2015;112: E693–E699. Available from: http://www.pnas.org/content/112/7/E693.abstract 10.1073/pnas.1420657112 PubMed DOI PMC

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, et al. A eukaryote without a mitochondrial organelle. Curr Biol. Elsevier; 2016;26: 1274–1284. 10.1016/j.cub.2016.03.053 PubMed DOI

Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol & Evol. Macmillan Publishers Limited, part of Springer Nature.; 2017;1: 92 Available from: 10.1038/s41559-017-0092 PubMed DOI PMC

Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC. Euglena gracilis genome and transcriptome: Organelles, nuclear genome assembly strategies and initial features In: Schwartzbach SD, Shigeoka S, editors. Euglena: Biochemistry, Cell and Molecular Biology. Cham: Springer International Publishing; 2017. pp. 125–140. 10.1007/978-3-319-54910-1_7 PubMed DOI

Leger MM, Eme L, Hug LA, Roger AJ. Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata Mol Biol Evol. Oxford University Press; 2016;33: 2318–2336. 10.1093/molbev/msw103 PubMed DOI PMC

Tsaousis AD, Gaston D, Stechmann A, Walker PB, Lithgow T, Roger AJ. A functional Tom70 in the human parasite Blastocystis sp.: Implications for the evolution of the mitochondrial import apparatus. Mol Biol Evol. 2011;28: 781–791. 10.1093/molbev/msq252 PubMed DOI

Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AGB, et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc R Soc B Biol Sci. 2013;280 Available from: http://rspb.royalsocietypublishing.org/content/280/1769/20131755.abstract PubMed PMC

Frickey T, Lupas A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics. 2004;20: 3702–3704. Available from: 10.1093/bioinformatics/bth444 PubMed DOI

Ahting U, Thun C, Hegerl R, Typke D, Nargang FE, Neupert W, et al. The TOM core complex: The general protein import pore of the outer membrane of mitochondria. J Cell Biol. 1999;147: 959–968. 10.1083/jcb.147.5.959 PubMed DOI PMC

Klein A, Israel L, Lackey SWK, Nargang FE, Imhof A, Baumeister W, et al. Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane. J Cell Biol. 2012;199: 599–611. Available from: http://jcb.rupress.org/content/199/4/599.abstract 10.1083/jcb.201207161 PubMed DOI PMC

Becker T, Wenz L-S, Thornton N, Stroud D, Meisinger C, Wiedemann N, et al. Biogenesis of mitochondria: Dual dole of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J Mol Biol. 2011;405: 113–124. 10.1016/j.jmb.2010.11.002 PubMed DOI

Zarsky V, Tachezy J, Dolezal P. Tom40 is likely common to all mitochondria. Curr Biol. 2012;22: R479–R481. 10.1016/j.cub.2012.03.057 PubMed DOI

Kinoshita J, Mihara K, Oka T. Identification and characterization of a new tom40 isoform, a central component of mitochondrial outer membrane translocase. J Biochem. 2007;141: 897–906. Available from: 10.1093/jb/mvm097 PubMed DOI

Jores T, Klinger A, Groß LE, Kawano S, Flinner N, Duchardt-Ferner E, et al. Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat Commun. The Author(s); 2016;7: 12036 Available from: 10.1038/ncomms12036 PubMed DOI PMC

Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell. Elsevier; 2003;112: 41–50. 10.1016/S0092-8674(02)01250-3 PubMed DOI

Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci. 2003;100: 13207–13212. Available from: http://www.pnas.org/content/100/23/13207.abstract 10.1073/pnas.2135385100 PubMed DOI PMC

Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, et al. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. WILEY-VCH Verlag; 2009;9: 434–450. 10.1002/pmic.200800477 PubMed DOI PMC

Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. Elsevier; 2008;134: 112–123. 10.1016/j.cell.2008.06.016 PubMed DOI PMC

Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41: 1421–1434. 10.1016/j.ijpara.2011.10.001 PubMed DOI PMC

Li J, Sha B. The structure of Tim50(164–361) suggests the mechanism by which Tim50 receives mitochondrial presequences. Acta Crystallogr Sect F, Struct Biol Commun. United States; 2015;71: 1146–1151. 10.1107/S2053230X15013102 PubMed DOI PMC

Geissler A, Krimmer T, Bömer U, Guiard B, Rassow J, Pfanner N. Membrane potential-driven protein import into mitochondria: The sorting sequence of cytochrome b(2) modulates the Δψ-dependence of translocation of the matrix-targeting sequence. Fox TD, editor. Mol Biol Cell. The American Society for Cell Biology; 2000;11: 3977–3991. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC15051/ PubMed PMC

Šmíd O, Matušková A, Harris SR, Kučera T, Novotný M, Horváthová L, et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 2008;4(12): e1000243 Available from: 10.1371/journal.ppat.1000243 PubMed DOI PMC

Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, Tachezy J, et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature. 2004;432: 618–622. 10.1038/nature03149 PubMed DOI

Štáfková J, Rada P, Meloni D, Žárský V, Smutná T, Zimmann N, et al. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol Cell Proteomics. 2017; 10.1074/mcp.RA117.000434 PubMed DOI PMC

Gnanasundram SV, Koš M. Fast protein-depletion system utilizing tetracycline repressible promoter and N-end rule in yeast. Boone C, editor. Mol Biol Cell. The American Society for Cell Biology; 2015;26: 762–768. 10.1091/mbc.E14-07-1186 PubMed DOI PMC

Becker T, Wenz L-S, Krüger V, Lehmann W, Müller JM, Goroncy L, et al. The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. J Cell Biol. 2011;194: 387–395. Available from: http://jcb.rupress.org/content/194/3/387.abstract 10.1083/jcb.201102044 PubMed DOI PMC

Alva V, Nam S-Z, Söding J, Lupas AN. The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 2016;44: W410–W415. 10.1093/nar/gkw348 PubMed DOI PMC

Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39: 29–37. 10.1093/nar/gkr367 PubMed DOI PMC

Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. HMMER web server: 2015 Update. Nucleic Acids Res. 2015;43: W30–W38. 10.1093/nar/gkv397 PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10: 210 10.1186/1471-2148-10-210 PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32: 268–274. Available from: 10.1093/molbev/msu300 PubMed DOI PMC

Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013;41: 349–357. 10.1093/nar/gkt381 PubMed DOI PMC

Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M, et al. Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics. John Wiley & Sons, Inc.; 2002. 10.1002/0471250953.bi0506s15 PubMed DOI PMC

Maghrabi AHA, Mcguffin LJ. ModFOLD6: An accurate web server for the global and local quality estimation of 3D protein models. Nucleic Acids Res. 2017;45: W416–W421. 10.1093/nar/gkx332 PubMed DOI PMC

McGuffin LJ, Shuid AN, Kempster R, Maghrabi AHA, Nealon JO, Salehe BR, et al. Accurate template-based modeling in CASP12 using the IntFOLD4-TS, ModFOLD6, and ReFOLD methods. Proteins Struct Funct Bioinforma. 2017; 10.1002/prot.25360 PubMed DOI

Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci. 2001;98: 10037–10041. 10.1073/pnas.181342398 PubMed DOI PMC

Walther DM, Papic D, Bos MP, Tommassen J, Rapaport D. Signals in bacterial beta-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proc Natl Acad Sci U S A. 2009;106: 2531–2536. 10.1073/pnas.0807830106 PubMed DOI PMC

Dawson SC, Sagolla MS, Cande WZ. The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma. 2007;116: 175–184. 10.1007/s00412-006-0091-3 PubMed DOI

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. Nature Publishing Group; 2009;6: 359 Available from: 10.1038/nmeth.1322 PubMed DOI

Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44: D447–D456. Available from: 10.1093/nar/gkv1145 PubMed DOI PMC

Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol. Academic Press; 2016;193: 1–12. 10.1016/j.jsb.2015.11.003 PubMed DOI PMC

Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, et al. EMAN2: An extensible image processing suite for electron microscopy. J Struct Biol. 2007;157: 38–46. 10.1016/j.jsb.2006.05.009 PubMed DOI

Scheres SHW. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180: 519–530. 10.1016/j.jsb.2012.09.006 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis

. 2024 Jun 03 ; 22 (1) : 130. [epub] 20240603

The divergent ER-mitochondria encounter structures (ERMES) are conserved in parabasalids but lost in several anaerobic lineages with hydrogenosomes

. 2023 Nov 15 ; 21 (1) : 259. [epub] 20231115

A mitochondrion-free eukaryote contains proteins capable of import into an exogenous mitochondrion-related organelle

. 2023 Jan ; 13 (1) : 220238. [epub] 20230111

Reduced mitochondria provide an essential function for the cytosolic methionine cycle

. 2022 Dec 05 ; 32 (23) : 5057-5068.e5. [epub] 20221107

Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics

. 2022 Mar 01 ; 20 (1) : 56. [epub] 20220301

Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments

. 2021 Dec 09 ; 38 (12) : 5241-5254.

Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol

. 2021 Nov ; 17 (11) : e1010041. [epub] 20211115

The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba

. 2021 May 19 ; 38 (6) : 2240-2259.

Determinism and contingencies shaped the evolution of mitochondrial protein import

Anaerobic peroxisomes in Mastigamoeba balamuthi

. 2020 Jan 28 ; 117 (4) : 2065-2075. [epub] 20200113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...