Determinism and contingencies shaped the evolution of mitochondrial protein import

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33526678

Mitochondrial protein import requires outer membrane receptors that evolved independently in different lineages. Here we used quantitative proteomics and in vitro binding assays to investigate the substrate preferences of ATOM46 and ATOM69, the two mitochondrial import receptors of Trypanosoma brucei The results show that ATOM46 prefers presequence-containing, hydrophilic proteins that lack transmembrane domains (TMDs), whereas ATOM69 prefers presequence-lacking, hydrophobic substrates that have TMDs. Thus, the ATOM46/yeast Tom20 and the ATOM69/yeast Tom70 pairs have similar substrate preferences. However, ATOM46 mainly uses electrostatic, and Tom20 hydrophobic, interactions for substrate binding. In vivo replacement of T. brucei ATOM46 by yeast Tom20 did not restore import. However, replacement of ATOM69 by the recently discovered Tom36 receptor of Trichomonas hydrogenosomes, while not allowing for growth, restored import of a large subset of trypanosomal proteins that lack TMDs. Thus, even though ATOM69 and Tom36 share the same domain structure and topology, they have different substrate preferences. The study establishes complementation experiments, combined with quantitative proteomics, as a highly versatile and sensitive method to compare in vivo preferences of protein import receptors. Moreover, it illustrates the role determinism and contingencies played in the evolution of mitochondrial protein import receptors.

Zobrazit více v PubMed

Roger A. J., Muñoz-Gómez S. A., Kamikawa R., The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017). PubMed

Archibald J. M., Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015). PubMed

Dacks J. B., et al. ., The changing view of eukaryogenesis–Fossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695–3703 (2016). PubMed

Hansen K. G., Herrmann J. M., Transport of proteins into mitochondria. Protein J. 38, 330–342 (2019). PubMed

Pfanner N., Warscheid B., Wiedemann N., Mitochondrial proteins: From biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284 (2019). PubMed PMC

Mani J., Meisinger C., Schneider A., Peeping at TOMs-diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol. Biol. Evol. 33, 337–351 (2016). PubMed

Dolezal P., Likic V., Tachezy J., Lithgow T., Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–318 (2006). PubMed

Schneider A., Evolution of mitochondrial protein import–Lessons from trypanosomes. Biol. Chem. 401, 663–676 (2020). PubMed

Fukasawa Y., Oda T., Tomii K., Imai K., Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol. Biol. Evol. 34, 1574–1586 (2017). PubMed PMC

Mossmann D., Meisinger C., Vögtle F. N., Processing of mitochondrial presequences. Biochim. Biophys. Acta 1819, 1098–1106 (2012). PubMed

Vögtle F. N., et al. ., Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139, 428–439 (2009). PubMed

Perry A. J., et al. ., Structure, topology and function of the translocase of the outer membrane of mitochondria. Plant Physiol. Biochem. 46, 265–274 (2008). PubMed

Endo T., Kohda D., Functions of outer membrane receptors in mitochondrial protein import. Biochim. Biophys. Acta 1592, 3–14 (2002). PubMed

Söllner T., Griffiths G., Pfaller R., Pfanner N., Neupert W., MOM19, an import receptor for mitochondrial precursor proteins. Cell 59, 1061–1070 (1989). PubMed

Ramage L., Junne T., Hahne K., Lithgow T., Schatz G., Functional cooperation of mitochondrial protein import receptors in yeast. EMBO J. 12, 4115–4123 (1993). PubMed PMC

Saitoh T., et al. ., Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. EMBO J. 26, 4777–4787 (2007). PubMed PMC

Abe Y., et al. ., Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 (2000). PubMed

Hines V., Schatz G., Precursor binding to yeast mitochondria. A general role for the outer membrane protein Mas70p. J. Biol. Chem. 268, 449–454 (1993). PubMed

Hines V., et al. ., Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70. EMBO J. 9, 3191–3200 (1990). PubMed PMC

Steger H. F., et al. ., Import of ADP/ATP carrier into mitochondria: Two receptors act in parallel. J. Cell Biol. 111, 2353–2363 (1990). PubMed PMC

Backes S., et al. ., Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382 (2018). PubMed PMC

Hachiya N., et al. ., Reconstitution of the initial steps of mitochondrial protein import. Nature 376, 705–709 (1995). PubMed

Young J. C., Hoogenraad N. J., Hartl F. U., Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003). PubMed

Chan N. C., Likić V. A., Waller R. F., Mulhern T. D., Lithgow T., The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J. Mol. Biol. 358, 1010–1022 (2006). PubMed

Wu Y., Sha B., Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Nat. Struct. Mol. Biol. 13, 589–593 (2006). PubMed

Harkness T. A., Nargang F. E., van der Klei I., Neupert W., Lill R., A crucial role of the mitochondrial protein import receptor MOM19 for the biogenesis of mitochondria. J. Cell Biol. 124, 637–648 (1994). PubMed PMC

Moczko M., et al. ., Identification of the mitochondrial receptor complex in Saccharomyces cerevisiae. FEBS Lett. 310, 265–268 (1992). PubMed

Yamamoto H., et al. ., Roles of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284, 31635–31646 (2009). PubMed PMC

Lithgow T., Junne T., Wachter C., Schatz G., Yeast mitochondria lacking the two import receptors Mas20p and Mas70p can efficiently and specifically import precursor proteins. J. Biol. Chem. 269, 15325–15330 (1994). PubMed

Heins L., Schmitz U. K., A receptor for protein import into potato mitochondria. Plant J. 9, 829–839 (1996). PubMed

Lister R., et al. ., Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19, 3739–3759 (2007). PubMed PMC

Perry A. J., Hulett J. M., Likić V. A., Lithgow T., Gooley P. R., Convergent evolution of receptors for protein import into mitochondria. Curr. Biol. 16, 221–229 (2006). PubMed

Chew O., et al. ., A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett. 557, 109–114 (2004). PubMed

Mani J., et al. ., Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat. Commun. 6, 6646 (2015). PubMed PMC

Hammond M. J., et al. ., A uniquely complex mitochondrial proteome from Euglena gracilis. Mol. Biol. Evol. 37, 2173–2191 (2020). PubMed PMC

Müller M., The hydrogenosome. J. Gen. Microbiol. 139, 2879–2889 (1993). PubMed

Makki A., et al. ., Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 17, e3000098 (2019). PubMed PMC

Pusnik M., et al. ., Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr. Biol. 21, 1738–1743 (2011). PubMed

Peikert C. D., et al. ., Charting organellar importomes by quantitative mass spectrometry. Nat. Commun. 8, 15272 (2017). PubMed PMC

Fukasawa Y., et al. ., MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics 14, 1113–1126 (2015). PubMed PMC

Backes S., et al. , The mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. bioRxiv [preprint] (2020). https://www.biorxiv.org/content/10.1101/2020.09.14.296194v1. Accessed 20 November 2020. PubMed DOI PMC

Ramrath D. J. F., et al. ., Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362, eaau7735 (2018). PubMed

Long S., Jirku M., Ayala F. J., Lukes J., Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc. Natl. Acad. Sci. U.S.A. 105, 13468–13473 (2008). PubMed PMC

Gould S. J., Wonderful Life: The Burgess Shale and the Nature of History (W.W. Norton & Co., New York, 1990).

Blount Z. D., Lenski R. E., Losos J. B., Contingency and determinism in evolution: Replaying life’s tape. Science 362, eaam5979 (2018). PubMed

Brix J., Rüdiger S., Bukau B., Schneider-Mergener J., Pfanner N., Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274, 16522–16530 (1999). PubMed

Brix J., Dietmeier K., Pfanner N., Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735 (1997). PubMed

Groves M. R., Barford D., Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389 (1999). PubMed

Wirtz E., Leal S., Ochatt C., Cross G. A., A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89–101 (1999). PubMed

Bochud-Allemann N., Schneider A., Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. J. Biol. Chem. 277, 32849–32854 (2002). PubMed

Cox J., et al. ., Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011). PubMed

Cox J., Mann M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed

Schägger H., von Jagow G., Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223–231 (1991). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...