Determinism and contingencies shaped the evolution of mitochondrial protein import
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33526678
PubMed Central
PMC8017667
DOI
10.1073/pnas.2017774118
PII: 2017774118
Knihovny.cz E-zdroje
- Klíčová slova
- Trichomonas, Trypanosoma, mitochondria, protein import, receptors,
- MeSH
- mitochondriální importní komplex MeSH
- mitochondriální proteiny genetika MeSH
- mitochondrie genetika metabolismus MeSH
- molekulární evoluce * MeSH
- proteinové prekurzory genetika MeSH
- Saccharomyces cerevisiae - proteiny genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- transport proteinů genetika MeSH
- transportní proteiny mitochondriální membrány genetika MeSH
- transportní proteiny genetika MeSH
- Trypanosoma brucei brucei genetika metabolismus patogenita MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální importní komplex MeSH
- mitochondriální proteiny MeSH
- proteinové prekurzory MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- TOM20 protein, S cerevisiae MeSH Prohlížeč
- TOM70 protein, S cerevisiae MeSH Prohlížeč
- transportní proteiny mitochondriální membrány MeSH
- transportní proteiny MeSH
Mitochondrial protein import requires outer membrane receptors that evolved independently in different lineages. Here we used quantitative proteomics and in vitro binding assays to investigate the substrate preferences of ATOM46 and ATOM69, the two mitochondrial import receptors of Trypanosoma brucei The results show that ATOM46 prefers presequence-containing, hydrophilic proteins that lack transmembrane domains (TMDs), whereas ATOM69 prefers presequence-lacking, hydrophobic substrates that have TMDs. Thus, the ATOM46/yeast Tom20 and the ATOM69/yeast Tom70 pairs have similar substrate preferences. However, ATOM46 mainly uses electrostatic, and Tom20 hydrophobic, interactions for substrate binding. In vivo replacement of T. brucei ATOM46 by yeast Tom20 did not restore import. However, replacement of ATOM69 by the recently discovered Tom36 receptor of Trichomonas hydrogenosomes, while not allowing for growth, restored import of a large subset of trypanosomal proteins that lack TMDs. Thus, even though ATOM69 and Tom36 share the same domain structure and topology, they have different substrate preferences. The study establishes complementation experiments, combined with quantitative proteomics, as a highly versatile and sensitive method to compare in vivo preferences of protein import receptors. Moreover, it illustrates the role determinism and contingencies played in the evolution of mitochondrial protein import receptors.
Department of Parasitology Faculty of Science Charles University BIOCEV 12843 Prague Czech Republic
Signalling Research Centres BIOSS and CIBSS University of Freiburg 79104 Freiburg Germany
Zobrazit více v PubMed
Roger A. J., Muñoz-Gómez S. A., Kamikawa R., The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017). PubMed
Archibald J. M., Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015). PubMed
Dacks J. B., et al. ., The changing view of eukaryogenesis–Fossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695–3703 (2016). PubMed
Hansen K. G., Herrmann J. M., Transport of proteins into mitochondria. Protein J. 38, 330–342 (2019). PubMed
Pfanner N., Warscheid B., Wiedemann N., Mitochondrial proteins: From biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284 (2019). PubMed PMC
Mani J., Meisinger C., Schneider A., Peeping at TOMs-diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol. Biol. Evol. 33, 337–351 (2016). PubMed
Dolezal P., Likic V., Tachezy J., Lithgow T., Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–318 (2006). PubMed
Schneider A., Evolution of mitochondrial protein import–Lessons from trypanosomes. Biol. Chem. 401, 663–676 (2020). PubMed
Fukasawa Y., Oda T., Tomii K., Imai K., Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol. Biol. Evol. 34, 1574–1586 (2017). PubMed PMC
Mossmann D., Meisinger C., Vögtle F. N., Processing of mitochondrial presequences. Biochim. Biophys. Acta 1819, 1098–1106 (2012). PubMed
Vögtle F. N., et al. ., Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139, 428–439 (2009). PubMed
Perry A. J., et al. ., Structure, topology and function of the translocase of the outer membrane of mitochondria. Plant Physiol. Biochem. 46, 265–274 (2008). PubMed
Endo T., Kohda D., Functions of outer membrane receptors in mitochondrial protein import. Biochim. Biophys. Acta 1592, 3–14 (2002). PubMed
Söllner T., Griffiths G., Pfaller R., Pfanner N., Neupert W., MOM19, an import receptor for mitochondrial precursor proteins. Cell 59, 1061–1070 (1989). PubMed
Ramage L., Junne T., Hahne K., Lithgow T., Schatz G., Functional cooperation of mitochondrial protein import receptors in yeast. EMBO J. 12, 4115–4123 (1993). PubMed PMC
Saitoh T., et al. ., Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. EMBO J. 26, 4777–4787 (2007). PubMed PMC
Abe Y., et al. ., Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 (2000). PubMed
Hines V., Schatz G., Precursor binding to yeast mitochondria. A general role for the outer membrane protein Mas70p. J. Biol. Chem. 268, 449–454 (1993). PubMed
Hines V., et al. ., Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70. EMBO J. 9, 3191–3200 (1990). PubMed PMC
Steger H. F., et al. ., Import of ADP/ATP carrier into mitochondria: Two receptors act in parallel. J. Cell Biol. 111, 2353–2363 (1990). PubMed PMC
Backes S., et al. ., Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382 (2018). PubMed PMC
Hachiya N., et al. ., Reconstitution of the initial steps of mitochondrial protein import. Nature 376, 705–709 (1995). PubMed
Young J. C., Hoogenraad N. J., Hartl F. U., Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003). PubMed
Chan N. C., Likić V. A., Waller R. F., Mulhern T. D., Lithgow T., The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J. Mol. Biol. 358, 1010–1022 (2006). PubMed
Wu Y., Sha B., Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Nat. Struct. Mol. Biol. 13, 589–593 (2006). PubMed
Harkness T. A., Nargang F. E., van der Klei I., Neupert W., Lill R., A crucial role of the mitochondrial protein import receptor MOM19 for the biogenesis of mitochondria. J. Cell Biol. 124, 637–648 (1994). PubMed PMC
Moczko M., et al. ., Identification of the mitochondrial receptor complex in Saccharomyces cerevisiae. FEBS Lett. 310, 265–268 (1992). PubMed
Yamamoto H., et al. ., Roles of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284, 31635–31646 (2009). PubMed PMC
Lithgow T., Junne T., Wachter C., Schatz G., Yeast mitochondria lacking the two import receptors Mas20p and Mas70p can efficiently and specifically import precursor proteins. J. Biol. Chem. 269, 15325–15330 (1994). PubMed
Heins L., Schmitz U. K., A receptor for protein import into potato mitochondria. Plant J. 9, 829–839 (1996). PubMed
Lister R., et al. ., Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19, 3739–3759 (2007). PubMed PMC
Perry A. J., Hulett J. M., Likić V. A., Lithgow T., Gooley P. R., Convergent evolution of receptors for protein import into mitochondria. Curr. Biol. 16, 221–229 (2006). PubMed
Chew O., et al. ., A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett. 557, 109–114 (2004). PubMed
Mani J., et al. ., Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat. Commun. 6, 6646 (2015). PubMed PMC
Hammond M. J., et al. ., A uniquely complex mitochondrial proteome from Euglena gracilis. Mol. Biol. Evol. 37, 2173–2191 (2020). PubMed PMC
Müller M., The hydrogenosome. J. Gen. Microbiol. 139, 2879–2889 (1993). PubMed
Makki A., et al. ., Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 17, e3000098 (2019). PubMed PMC
Pusnik M., et al. ., Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr. Biol. 21, 1738–1743 (2011). PubMed
Peikert C. D., et al. ., Charting organellar importomes by quantitative mass spectrometry. Nat. Commun. 8, 15272 (2017). PubMed PMC
Fukasawa Y., et al. ., MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics 14, 1113–1126 (2015). PubMed PMC
Backes S., et al. , The mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. bioRxiv [preprint] (2020). https://www.biorxiv.org/content/10.1101/2020.09.14.296194v1. Accessed 20 November 2020. PubMed DOI PMC
Ramrath D. J. F., et al. ., Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362, eaau7735 (2018). PubMed
Long S., Jirku M., Ayala F. J., Lukes J., Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc. Natl. Acad. Sci. U.S.A. 105, 13468–13473 (2008). PubMed PMC
Gould S. J., Wonderful Life: The Burgess Shale and the Nature of History (W.W. Norton & Co., New York, 1990).
Blount Z. D., Lenski R. E., Losos J. B., Contingency and determinism in evolution: Replaying life’s tape. Science 362, eaam5979 (2018). PubMed
Brix J., Rüdiger S., Bukau B., Schneider-Mergener J., Pfanner N., Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274, 16522–16530 (1999). PubMed
Brix J., Dietmeier K., Pfanner N., Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735 (1997). PubMed
Groves M. R., Barford D., Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389 (1999). PubMed
Wirtz E., Leal S., Ochatt C., Cross G. A., A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89–101 (1999). PubMed
Bochud-Allemann N., Schneider A., Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. J. Biol. Chem. 277, 32849–32854 (2002). PubMed
Cox J., et al. ., Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011). PubMed
Cox J., Mann M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed
Schägger H., von Jagow G., Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223–231 (1991). PubMed
Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments