Addition of Endothelin A-Receptor Blockade Spoils the Beneficial Effect of Combined Renin-Angiotensin and Soluble Epoxide Hydrolase Inhibition: Studies on the Course of Chronic Kidney Disease in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 DK103616
NIDDK NIH HHS - United States
R01 DK126452
NIDDK NIH HHS - United States
PubMed
31770762
PubMed Central
PMC10107074
DOI
10.1159/000504137
PII: 000504137
Knihovny.cz E-zdroje
- Klíčová slova
- 5/6 Renal mass reduction, Chronic kidney disease, Endothelin A receptor blocker, Hypertension, Renin-angiotensin system, Soluble epoxide hydrolase inhibitor,
- MeSH
- antagonisté endotelinového receptoru A farmakologie MeSH
- chronická renální insuficience prevence a kontrola MeSH
- epoxid hydrolasy antagonisté a inhibitory MeSH
- hypertenze MeSH
- krysa rodu Rattus MeSH
- nefrektomie MeSH
- potkani transgenní MeSH
- receptor endotelinu A MeSH
- renin-angiotensin systém účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antagonisté endotelinového receptoru A MeSH
- epoxid hydrolasy MeSH
- receptor endotelinu A MeSH
INTRODUCTION: Previous studies in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX) have shown that besides pharmacological blockade of the renin-angiotensin system (RAS) also increasing kidney tissue epoxyeicosatrienoic acids (EET) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for degradation of EETs, and endothelin type A (ETA) receptor blockade retards chronic kidney disease (CKD) progression. This prompted us to evaluate if this progression will be alleviated by the addition of sEH inhibitor and ETA receptor antagonist to the standard complex blockade of RAS (angiotensin-converting enzyme inhibitor plus angiotensin II type 1 receptor blocker) in rats with established CKD. METHODS: The treatment regimens were initiated 6 weeks after 5/6 NX in TGR, and the follow-up period was 60 weeks. RESULTS: The addition of sEH inhibition to RAS blockade improved survival rate, further reduced albuminuria and renal glomerular and kidney tubulointerstitial injury, and attenuated the decline in creatinine clearance - all this as compared with 5/6 NX TGR treated with RAS blockade alone. Addition of ETA receptor antagonist to the combined RAS and sEH blockade not only offered no additional renoprotection but, surprisingly, also abolished the beneficial effects of adding sEH inhibitor to the RAS blockade. CONCLUSION: These data indicate that pharmacological strategies that combine the blockade of RAS and sEH could be a novel tool to combat the progression of CKD. Any attempts to further extend this therapeutic regimen should be made with extreme caution.
Center for Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czechia
Department of Entomology and UCD Cancer Center University of California Davis California USA
Department of Nephrology 1st Faculty of Medicine Charles University Prague Czechia
Department of Pathology 3rd Faculty of Medicine Charles University Prague Czechia
Department of Pathophysiology 2nd Faculty of Medicine Charles University Prague Czechia
Department of Pharmacology and Toxicology Medical College of Wisconsin Milwaukee Wisconsin USA
Institute of Physiology Academy of Sciences of the Czech Republic Prague Czechia
Zobrazit více v PubMed
Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013. Jul; 382(9888): 260–72. PubMed
U.S. Renal Data System: USRDS. Annual Data Report 2015. Epidemiology of kidney disease in the United States.
Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985. Sep; 249(3 Pt 2):F324–37. PubMed
Zoja C, Abbate M, Remuzzi G. Progression of chronic kidney disease: insights from animal models. Curr Opin Nephrol Hypertens. 2006. May; 15(3): 250–7. PubMed
Zhong J, Yang HC, Fogo AB. A perspective on chronic kidney disease progression. Am J Physiol Renal Physiol. 2017. Mar; 312(3):F375–84. PubMed PMC
Raij L. The pathophysiologic basis for blocking the renin-angiotensin system in hypertensive patients with renal disease. Am J Hypertens. 2005. Apr; 18(4 Pt 2): 95S–9S. PubMed
Wheeler DC, Becker GJ Summary of KDIGO guideline. What do we really know about management of blood pressure in patients with chronic kidney disease? Kidney Int. 2013. Mar; 83(3): 377–83. PubMed
Der Mesropian PJ, Shaikh G, Cordero Torres E, Bilal A, Mathew RO. Antihypertensive therapy in nondiabetic chronic kidney disease: a review and update. J Am Soc Hypertens. 2018. Mar; 12(3): 154–81. PubMed
Turner JM, Bauer C, Abramowitz MK, Melamed ML, Hostetter TH. Treatment of chronic kidney disease. Kidney Int. 2012. Feb; 81(4): 351–62. PubMed
Breyer MD, Susztak K. Developing treatments for chronic kidney disease in the 21st century. Semin Nephrol. 2016. Nov; 36(6): 436–47. PubMed PMC
Czopek A, Moorhouse R, Webb DJ, Dhaun N. Therapeutic potential of endothelin receptor antagonism in kidney disease. Am J Physiol Regul Integr Comp Physiol. 2016. Mar; 310(5):R388–97. PubMed
Komers R, Plotkin H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am J Physiol Regul Integr Comp Physiol. 2016. May; 310(10):R877–84. PubMed PMC
Morrison AB. Experimentally induced chronic renal insufficiency in the rat. Lab Invest. 1962. Apr; 11: 321–32. PubMed
Shimamura T, Morrison AB. A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am J Pathol. 1975. Apr; 79(1): 95–106. PubMed PMC
Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin Nephrol. 2003. Mar; 23(2): 194–9. PubMed
Čertíková Chábová V, Červenka L. The dilemma of dual renin-angiotensin system blockade in chronic kidney disease: why beneficial in animal experiments but not in the clinic? Physiol Res. 2017. May; 66(2): 181–92. PubMed
Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988. Mar; 332(6163): 411–5. PubMed
Vanêcková I, Kramer HJ, Bäcker A, Vernerová Z, Opočenský M, Červenka L. Early endothelin-A receptor blockade decreases blood pressure and ameliorates end-organ damage in homozygous Ren-2 rats. Hypertension. 2005. Oct; 46(4): 969–74. PubMed
Vaněčková I, Kujal P, Husková Z, Vaňourková Z, Vernerová Z, Certíková Chábová V, et al. Effects of combined endothelin A receptor and renin-angiotensin system blockade on the course of end-organ damage in 5/6 nephrectomized Ren-2 hypertensive rats. Kidney Blood Press Res. 2012; 35(5): 382–92. PubMed
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, et al. Endothelin. Pharmacol Rev. 2016. Apr; 68(2): 357–418. PubMed PMC
De Miguel C, Speed JS, Kasztan M, Gohar EY, Pollock DM. Endothelin-1 and the kidney: new perspectives and recent findings. Curr Opin Nephrol Hypertens. 2016. Jan; 25(1): 35–41. PubMed PMC
Vaněčková I, Hojná S, Kadlecová M, Vernerová Z, Kopkan L, Červenka L, et al. Renoprotective effects of ET(A) receptor antagonists therapy in experimental non-diabetic chronic kidney disease: is there still hope for the future? Physiol Res. 2018. Jun; 67 Suppl 1:S55–67. PubMed
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990. Apr; 344(6266): 541–4. PubMed
Čertíková Chábová V, Vernerová Z, Kujal P, Husková Z, Škaroupková P, Tesař V, et al. Addition of ET(A) receptor blockade increases renoprotection provided by renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic rats. Life Sci. 2014. Nov; 118(2): 297–305. PubMed
Fan F, Roman RJ. Effect of cytochrome P450 metabolites of arachidonic acid in nephrology. J Am Soc Nephrol. 2017. Oct; 28(10): 2845–55. PubMed PMC
Imig JD. Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol Ther. 2018. Dec; 192: 1–19. PubMed PMC
Kujal P, Čertíková Chábová V, Škaroupková P, Husková Z, Vernerová Z, Kramer HJ, et al. Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Pharmacol Physiol. 2014. Mar; 41(3): 227–37. PubMed PMC
Čertíková Chábová V, Kujal P, Škaroupková P, Varňourková Z, Vacková Š, Husková Z, et al. Combined inhibition of soluble epoxide hydrolase and renin-angiotensin system exhibits superior renoprotection to renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic hypertensive rats with established chronic kidney disease. Kidney Blood Press Res. 2018; 43(2): 329–49. PubMed PMC
Sangalli F, Carrara F, Gaspari F, Corna D, Zoja C, Botti L, et al. Effect of ACE inhibition on glomerular permselectivity and tubular albumin concentration in the renal ablation model. Am J Physiol Renal Physiol. 2011. Jun; 300(6):F1291–300. PubMed
Sedláková L, Čertíková Chábová V, Doleželová Š, Škaroupková P, Kopkan L, Husková Z, et al. Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens. 2017; 39(2): 183–95. PubMed
Kujal P, Chábová VČ, Vernerová Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, et al. Similar reno-protection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010. Dec; 37(12): 1159–69. PubMed
Fujihara CK, Velho M, Malheiros DM, Zatz R. An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney Int. 2005. May; 67(5): 1913–24. PubMed
Sporková A, Jíchová S, Husková Z, Kopkan L, Nishiyama A, Hwang SH, et al. Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2014. Dec; 41(12): 1003–13. PubMed PMC
Vaněčková I, Dobešová Z, Kuneš J, Vernerová Z, Zicha J. Endothelin A receptor blocker atrasentan lowers blood pressure by the reduction of nifedipine-sensitive calcium influx in Ren-2 transgenic rats fed a high-salt diet. J Hypertens. 2015. Jan; 33(1): 161–9. PubMed
Nakano Y, Hirano T, Uehara K, Nishibayashi S, Hattori K, Aihara M, et al. New rat model induced by antiglomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progresses to end-stage renal failure. Pathol Int. 2008. Jun; 58(6): 361–70. PubMed
Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic press; 2013. pp. 1–17.
Arias SC, Valente CP, Machado FG, Fanelli C, Origassa CS, de Brito T, et al. Regression of albuminuria and hypertension and arrest of severe renal injury by a losartan-hydrochlorothiazide association in a model of very advanced nephropathy. PLoS One. 2013; 8(2):e56215. PubMed PMC
Arias SC, Souza RA, Malheiros DM, Fanelli C, Fujihara CK, Zatz R. An association of losartan-hydrochlorothiazide, but not losartan-furosemide, completely arrests progressive injury in the remnant kidney. Am J Physiol Renal Physiol. 2016. Jan; 310(2):F135–43. PubMed
Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014. May; 63(5): 713–35. PubMed
Barton M, Shaw S, d’Uscio LV, Moreau P, Lüscher TF. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin converting enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem Biophys Res Commun. 1997. Sep; 238(3): 861–5. PubMed
Rossi GP, Sacchetto A, Cesari M, Pessina AC. Interactions between endothelin-1 and the renin-angiotensin-aldosterone system. Cardiovasc Res. 1999. Aug; 43(2): 300–7. PubMed
Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013. Jan; 22(1): 1–9. PubMed PMC
Navar LG. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol. 1978. May; 234(5):F357–70. PubMed
Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015. Apr; 95(2): 405–511. PubMed PMC
Altered Balance between Vasoconstrictor and Vasodilator Systems in Experimental Hypertension