Addition of Endothelin A-Receptor Blockade Spoils the Beneficial Effect of Combined Renin-Angiotensin and Soluble Epoxide Hydrolase Inhibition: Studies on the Course of Chronic Kidney Disease in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats

. 2019 ; 44 (6) : 1493-1505. [epub] 20191126

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31770762

Grantová podpora
R01 DK103616 NIDDK NIH HHS - United States
R01 DK126452 NIDDK NIH HHS - United States

INTRODUCTION: Previous studies in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX) have shown that besides pharmacological blockade of the renin-angiotensin system (RAS) also increasing kidney tissue epoxyeicosatrienoic acids (EET) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for degradation of EETs, and endothelin type A (ETA) receptor blockade retards chronic kidney disease (CKD) progression. This prompted us to evaluate if this progression will be alleviated by the addition of sEH inhibitor and ETA receptor antagonist to the standard complex blockade of RAS (angiotensin-converting enzyme inhibitor plus angiotensin II type 1 receptor blocker) in rats with established CKD. METHODS: The treatment regimens were initiated 6 weeks after 5/6 NX in TGR, and the follow-up period was 60 weeks. RESULTS: The addition of sEH inhibition to RAS blockade improved survival rate, further reduced albuminuria and renal glomerular and kidney tubulointerstitial injury, and attenuated the decline in creatinine clearance - all this as compared with 5/6 NX TGR treated with RAS blockade alone. Addition of ETA receptor antagonist to the combined RAS and sEH blockade not only offered no additional renoprotection but, surprisingly, also abolished the beneficial effects of adding sEH inhibitor to the RAS blockade. CONCLUSION: These data indicate that pharmacological strategies that combine the blockade of RAS and sEH could be a novel tool to combat the progression of CKD. Any attempts to further extend this therapeutic regimen should be made with extreme caution.

Zobrazit více v PubMed

Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013. Jul; 382(9888): 260–72. PubMed

U.S. Renal Data System: USRDS. Annual Data Report 2015. Epidemiology of kidney disease in the United States.

Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985. Sep; 249(3 Pt 2):F324–37. PubMed

Zoja C, Abbate M, Remuzzi G. Progression of chronic kidney disease: insights from animal models. Curr Opin Nephrol Hypertens. 2006. May; 15(3): 250–7. PubMed

Zhong J, Yang HC, Fogo AB. A perspective on chronic kidney disease progression. Am J Physiol Renal Physiol. 2017. Mar; 312(3):F375–84. PubMed PMC

Raij L. The pathophysiologic basis for blocking the renin-angiotensin system in hypertensive patients with renal disease. Am J Hypertens. 2005. Apr; 18(4 Pt 2): 95S–9S. PubMed

Wheeler DC, Becker GJ Summary of KDIGO guideline. What do we really know about management of blood pressure in patients with chronic kidney disease? Kidney Int. 2013. Mar; 83(3): 377–83. PubMed

Der Mesropian PJ, Shaikh G, Cordero Torres E, Bilal A, Mathew RO. Antihypertensive therapy in nondiabetic chronic kidney disease: a review and update. J Am Soc Hypertens. 2018. Mar; 12(3): 154–81. PubMed

Turner JM, Bauer C, Abramowitz MK, Melamed ML, Hostetter TH. Treatment of chronic kidney disease. Kidney Int. 2012. Feb; 81(4): 351–62. PubMed

Breyer MD, Susztak K. Developing treatments for chronic kidney disease in the 21st century. Semin Nephrol. 2016. Nov; 36(6): 436–47. PubMed PMC

Czopek A, Moorhouse R, Webb DJ, Dhaun N. Therapeutic potential of endothelin receptor antagonism in kidney disease. Am J Physiol Regul Integr Comp Physiol. 2016. Mar; 310(5):R388–97. PubMed

Komers R, Plotkin H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am J Physiol Regul Integr Comp Physiol. 2016. May; 310(10):R877–84. PubMed PMC

Morrison AB. Experimentally induced chronic renal insufficiency in the rat. Lab Invest. 1962. Apr; 11: 321–32. PubMed

Shimamura T, Morrison AB. A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am J Pathol. 1975. Apr; 79(1): 95–106. PubMed PMC

Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin Nephrol. 2003. Mar; 23(2): 194–9. PubMed

Čertíková Chábová V, Červenka L. The dilemma of dual renin-angiotensin system blockade in chronic kidney disease: why beneficial in animal experiments but not in the clinic? Physiol Res. 2017. May; 66(2): 181–92. PubMed

Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988. Mar; 332(6163): 411–5. PubMed

Vanêcková I, Kramer HJ, Bäcker A, Vernerová Z, Opočenský M, Červenka L. Early endothelin-A receptor blockade decreases blood pressure and ameliorates end-organ damage in homozygous Ren-2 rats. Hypertension. 2005. Oct; 46(4): 969–74. PubMed

Vaněčková I, Kujal P, Husková Z, Vaňourková Z, Vernerová Z, Certíková Chábová V, et al. Effects of combined endothelin A receptor and renin-angiotensin system blockade on the course of end-organ damage in 5/6 nephrectomized Ren-2 hypertensive rats. Kidney Blood Press Res. 2012; 35(5): 382–92. PubMed

Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, et al. Endothelin. Pharmacol Rev. 2016. Apr; 68(2): 357–418. PubMed PMC

De Miguel C, Speed JS, Kasztan M, Gohar EY, Pollock DM. Endothelin-1 and the kidney: new perspectives and recent findings. Curr Opin Nephrol Hypertens. 2016. Jan; 25(1): 35–41. PubMed PMC

Vaněčková I, Hojná S, Kadlecová M, Vernerová Z, Kopkan L, Červenka L, et al. Renoprotective effects of ET(A) receptor antagonists therapy in experimental non-diabetic chronic kidney disease: is there still hope for the future? Physiol Res. 2018. Jun; 67 Suppl 1:S55–67. PubMed

Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990. Apr; 344(6266): 541–4. PubMed

Čertíková Chábová V, Vernerová Z, Kujal P, Husková Z, Škaroupková P, Tesař V, et al. Addition of ET(A) receptor blockade increases renoprotection provided by renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic rats. Life Sci. 2014. Nov; 118(2): 297–305. PubMed

Fan F, Roman RJ. Effect of cytochrome P450 metabolites of arachidonic acid in nephrology. J Am Soc Nephrol. 2017. Oct; 28(10): 2845–55. PubMed PMC

Imig JD. Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol Ther. 2018. Dec; 192: 1–19. PubMed PMC

Kujal P, Čertíková Chábová V, Škaroupková P, Husková Z, Vernerová Z, Kramer HJ, et al. Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Pharmacol Physiol. 2014. Mar; 41(3): 227–37. PubMed PMC

Čertíková Chábová V, Kujal P, Škaroupková P, Varňourková Z, Vacková Š, Husková Z, et al. Combined inhibition of soluble epoxide hydrolase and renin-angiotensin system exhibits superior renoprotection to renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic hypertensive rats with established chronic kidney disease. Kidney Blood Press Res. 2018; 43(2): 329–49. PubMed PMC

Sangalli F, Carrara F, Gaspari F, Corna D, Zoja C, Botti L, et al. Effect of ACE inhibition on glomerular permselectivity and tubular albumin concentration in the renal ablation model. Am J Physiol Renal Physiol. 2011. Jun; 300(6):F1291–300. PubMed

Sedláková L, Čertíková Chábová V, Doleželová Š, Škaroupková P, Kopkan L, Husková Z, et al. Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens. 2017; 39(2): 183–95. PubMed

Kujal P, Chábová VČ, Vernerová Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, et al. Similar reno-protection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010. Dec; 37(12): 1159–69. PubMed

Fujihara CK, Velho M, Malheiros DM, Zatz R. An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney Int. 2005. May; 67(5): 1913–24. PubMed

Sporková A, Jíchová S, Husková Z, Kopkan L, Nishiyama A, Hwang SH, et al. Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2014. Dec; 41(12): 1003–13. PubMed PMC

Vaněčková I, Dobešová Z, Kuneš J, Vernerová Z, Zicha J. Endothelin A receptor blocker atrasentan lowers blood pressure by the reduction of nifedipine-sensitive calcium influx in Ren-2 transgenic rats fed a high-salt diet. J Hypertens. 2015. Jan; 33(1): 161–9. PubMed

Nakano Y, Hirano T, Uehara K, Nishibayashi S, Hattori K, Aihara M, et al. New rat model induced by antiglomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progresses to end-stage renal failure. Pathol Int. 2008. Jun; 58(6): 361–70. PubMed

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic press; 2013. pp. 1–17.

Arias SC, Valente CP, Machado FG, Fanelli C, Origassa CS, de Brito T, et al. Regression of albuminuria and hypertension and arrest of severe renal injury by a losartan-hydrochlorothiazide association in a model of very advanced nephropathy. PLoS One. 2013; 8(2):e56215. PubMed PMC

Arias SC, Souza RA, Malheiros DM, Fanelli C, Fujihara CK, Zatz R. An association of losartan-hydrochlorothiazide, but not losartan-furosemide, completely arrests progressive injury in the remnant kidney. Am J Physiol Renal Physiol. 2016. Jan; 310(2):F135–43. PubMed

Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014. May; 63(5): 713–35. PubMed

Barton M, Shaw S, d’Uscio LV, Moreau P, Lüscher TF. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin converting enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem Biophys Res Commun. 1997. Sep; 238(3): 861–5. PubMed

Rossi GP, Sacchetto A, Cesari M, Pessina AC. Interactions between endothelin-1 and the renin-angiotensin-aldosterone system. Cardiovasc Res. 1999. Aug; 43(2): 300–7. PubMed

Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013. Jan; 22(1): 1–9. PubMed PMC

Navar LG. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol. 1978. May; 234(5):F357–70. PubMed

Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015. Apr; 95(2): 405–511. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace