Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats
Jazyk angličtina Země Austrálie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
ES02710
NIEHS NIH HHS - United States
R01 HL059699
NHLBI NIH HHS - United States
R01 ES002710
NIEHS NIH HHS - United States
P42 ES004699
NIEHS NIH HHS - United States
P42 ES04699
NIEHS NIH HHS - United States
NIDDK38226
PHS HHS - United States
U54 NS079202
NINDS NIH HHS - United States
HL059699
NHLBI NIH HHS - United States
R37 ES002710
NIEHS NIH HHS - United States
PubMed
24471737
PubMed Central
PMC4038339
DOI
10.1111/1440-1681.12204
Knihovny.cz E-zdroje
- Klíčová slova
- 5/6 nephrectomy, chronic kidney disease, cytochrome P450 enzymes, end-organ damage, epoxyeicosatrienoic acids, hypertension, renin-angiotensin system, soluble epoxide hydrolase,
- MeSH
- angiotensin II farmakologie MeSH
- chronická renální insuficience farmakoterapie metabolismus MeSH
- epoxid hydrolasy antagonisté a inhibitory metabolismus MeSH
- hypertenze farmakoterapie metabolismus MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- míra přežití MeSH
- nefrektomie metody MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- angiotensin II MeSH
- epoxid hydrolasy MeSH
1. The aim of the present study was to test the hypothesis that increasing kidney tissue concentrations of epoxyeicosatrienoic acids (EETs) by preventing their degradation to the biologically inactive dihydroxyeicosatrienoic acids (DHETEs) using blockade of soluble epoxide hydrolase (sEH) would attenuate the progression of chronic kidney disease (CKD). 2. Ren-2 transgenic rats (TGR) after 5/6 renal mass reduction (5/6 NX) served as a model of CKD associated with angiotensin (Ang) II-dependent hypertension. Soluble epoxide hydrolase was inhibited using cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid (c-AUCB; 3 mg/L drinking water) for 20 weeks after 5/6 NX. Sham-operated normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats served as controls. 3. When applied in TGR subjected to 5/6 NX, c-AUCB treatment improved survival rate, prevented the increase in blood pressure, retarded the progression of cardiac hypertrophy, reduced proteinuria and the degree of glomerular and tubulointerstitial injury and reduced glomerular volume. All these organ-protective actions were associated with normalization of the intrarenal EETs:DHETEs ratio, an index of the availability of biologically active EETs, to levels observed in sham-operated HanSD rats. There were no significant concurrent changes of increased intrarenal AngII content. 4. Together, these results show that 5/6 NX TGR exhibit a profound deficiency of intrarenal availability of active epoxygenase metabolites (EETs), which probably contributes to the progression of CKD in this model of AngII-dependent hypertension, and that restoration of intrarenal availability of EETs using long-term c-AUCB treatment exhibits substantial renoprotective actions.
Zobrazit více v PubMed
US Renal Data System. USEDS 2012 Annual Data Report. Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2012.
Brenner BM. Nephron adaptation to renal injury or ablation. Am. J. Physiol. 1985;249:F324–37. PubMed
Zoja C, Abbate M, Remuzzi G. Progression of chronic kidney disease: Insight from animal models. Curr. Opin. Nephrol. Hypertens. 2006;15:250–7. PubMed
Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin. Nephrol. 2003;23:194–9. PubMed
Hostetter TH, Olson JL, Rennke HG, Ventatachalam MA, Brenner BM. Hyperfiltration in remnant nephrons: A potentially adverse response to ablation. Am. J. Physiol. 1981;241:F85–93. PubMed
Shimamura T, Morrison AB. A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am. J. Pathol. 1975;79:95–106. PubMed PMC
Kriz W. Podocyte is the major culprit accounting for the progression of chronic renal disease. Micros. Res. Tech. 2002;57:189–95. PubMed
Macconi D. Targeting the renin angiotensin system for remission/regression of chronic kidney disease. Histol. Histopathol. 2010;25:655–68. PubMed
Kohan DE. Endothelin, hypertension and chronic kidney disease: New insight. Curr. Opin. Nephrol. Hypertens. 2010;19:134–9. PubMed PMC
Briet M, Burns KD. Chronic kidney disease and vascular remodeling. Molecular mechanisms and clinical implications. Clin. Sci. 2012;123:399–416. PubMed
Vanecková I, Kujal P, Husková Z, et al. Effects of combined endothelin a receptor and renin–angiotensin system blockade on the course of end-organ damage in 5/6 nephrectomized Ren-2 hypertensive rats. Kidney Blood Press. Res. 2012;35:382–92. PubMed
Kujal P, Certíková Chábová V, Vernerova Z, et al. Similar renoprotection after renin–angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: Are there blood pressure-independent effects? Clin. Exp. Pharmacol. Physiol. 2010;37:1159–69. PubMed
Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr. Opin. Nephrol. Hypertens. 2013;22:1–9. PubMed PMC
Ptinopolou AG, Pikilidou MI, Lasaridis N. The effect of antihypertensive drugs on chronic kidney disease: A comprehensive review. Hypertens. Res. 2013;36:91–101. PubMed
Turner JM, Bauer C, Abramowitz MK, Melamed ML, Hostetter TH. Treatment of chronic kidney disease. Kidney Int. 2012;81:351–62. PubMed
Rüster C, Wolf G. Renin–angiotensin–aldosterone system and progression of renal disease. J. Am. Soc. Nephrol. 2006;17:2985–91. PubMed
Berl T. Renal protection by inhibition of the renin–angiotensin–aldosterone system. J. Renin Angiotensin Aldosterone Syst. 2009;10:1–8. PubMed
Perico N, Amuchastegui SC, Colosio V, Sonzogni G, Bertani T, Remuzzi G. Evidence that an angiotensin-converting enzyme inhibitor has a different effect on glomerular injury according to the different phase of the disease at which the treatment is started. J. Am. Soc. Nephrol. 1994;5:1139–46. PubMed
Gordon J, Kopp JB. Off the beaten renin–angiotensin–aldosterone system pathway: New perspectives on antiproteinuric therapy. Adv. Chronic Kidney Dis. 2011;18:300–11. PubMed PMC
Lattanzio MR, Weir MR. Does blockade of the renin–angiotensin–aldosterone system slow progression of all forms of kidney disease? Curr. Hypertens. Rep. 2010;12:369–77. PubMed
Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent response. Pfugers Arch. 2010;459:881–95. PubMed PMC
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev. 2012;92:101–30. PubMed PMC
Capdevilla J, Wang W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr. Opin. Nephrol. Hypertens. 2013;22:163–9. PubMed PMC
Elmarakby AA. Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012;302:R321–30. PubMed
Li J, Carroll MA, Chander PN, Falck JR, Sangras B, Stier CT. Soluble epoxide hydrolase inhibitor, AUDA, prevents early salt-sensitive hypertension. Front. Biosci. 2008;13:3480–7. PubMed
Huang H, Morisseau C, Wang JF, et al. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. Am. J. Physiol. Renal Physiol. 2007;293:F342–9. PubMed
Sporková A, Kopkan L, Varcabová A, et al. Role of cytochrome P450 metabolites in the regulation of renal function and blood pressure in 2-kidney, 1-clip hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R1468–75. PubMed PMC
Neckár J, Kopkan L, Husková Z, et al. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-I-ylureido) cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin. Sci. 2012;122:513–25. PubMed PMC
Honetschlägerová Z, Husková Z, Vanourkova Z, et al. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J. Physiol. 2011;589:207–19. PubMed PMC
Kopkan L, Husková Z, Sporková A, et al. Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension. Kidney Blood Press. Res. 2012;35:595–607. PubMed PMC
Honetschlägerová Z, Sporková A, Kopkan L, et al. Inhibition of soluble epoxide hydrolase improves the impaired pressure–natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 2011;29:1590–601. PubMed PMC
Honetschlägerová Z, Kitada K, Husková Z, et al. Antihypertensive and renoprotective actions of soluble epoxide hydrolase inhibition in ANG II-dependent malignant hypertension are abolished by pretreatment with l-NAME. J. Hypertens. 2013;31:321–32. PubMed PMC
Zhao G, Tu L, Li X, et al. Delivery of AAV2-CYP2J2 protects remnant kidney in the 5/6-nephrectomized rat via inhibition of apoptosis and fibrosis. Hum. Gene Ther. 2012;23:688–99. PubMed
Jung O, Jansen F, Mieth A, et al. Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease. PLoS One. 2010;5:e11979. PubMed PMC
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–4. PubMed
Ripley E. Complementary effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in slowing the progression of chronic kidney disease. Am. Heart J. 2009;157(Suppl):S7–16. PubMed
Čertíková Chábová V, Walkowska A, Kompanowska-Jezierska E, et al. Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats. Clin. Sci. 2010;118:617–32. PubMed PMC
Williams JM, Murphy S, Burke M, Roman RJ. 20-Hydroxyeicosatetraenoic acid. A new target for the treatment of hypertension. J. Cardiovasc. Pharmacol. 2010;56:336–44. PubMed PMC
Ai D, Fu Y, Guo D, et al. Angiotensin II up-regulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. Proc. Natl Acad. Sci. USA. 2007;104:9018–23. PubMed PMC
Ai D, Shyy JYY, Zhu Y. Linking an insect enzyme to hypertension: Angiotensin II–epoxide hydrolase interactions. Kidney Int. 2010;77:88–92. PubMed
Yoshida Y, Fogo A, Shiraga H, Glick AD, Ichikawa I. Serial micropuncture analysis of single nephron function in subtotal renal ablation. Kidney Int. 1988;33:855–67. PubMed
Fogo A, Yoshida Y, Glick AD, Homma T, Ichikawa I. Serial micropuncture analysis of glomerular function in two rat models of glomerular sclerosis. J. Clin. Invest. 1988;82:322–30. PubMed PMC
Yoshida Y, Fogo A, Ichikawa I. Glomerular hemodynamic changes vs. hypertrophy in experimental glomerular sclerosis. Kidney Int. 1989;35:654–60. PubMed
Yoshida Y, Kawamura T, Ikoma M, Fogo A, Ichikawa I. Effects of antihypertensive drugs on glomerular morphology. Kidney Int. 1989;36:626–35. PubMed
Fukuda A, Wickman LT, Vekatareddy MP, et al. Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end-stage kidney disease. Kidney Int. 2012;81:40–55. PubMed PMC
Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis: Epithelial–mesenchymal transition. Hum. Pathol. 2009;40:1365–76. PubMed
Ni H, Chen J, Pan M, et al. FTY720 prevents progression of renal fibrosis by inhibiting renal microvasculature endothelial dysfunction in a rat model of chronic kidney disease. J. Mol. Histol. 2013;44:693–703. PubMed
Barnes JL, Gorin Y. Myofibroblast differention during fibrosis. Role of NAD(P)H oxidases. Kidney Int. 2011;79:944–56. PubMed PMC
Kopkan L, Husková Z, Vanourková Z, et al. Reduction of oxidative stress does not attenuate the development of angiotensin II-dependent hypertension in Ren-2 transgenic rats. Vasc. Pharmacol. 2009;51:175–81. PubMed
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin–angiotensin system: From physiology to the pathobiology of hypertension and kidney disease. Pharmacol. Rev. 2007;59:251–87. PubMed
Husková Z, Vanourková Z, Erbanová M, et al. Inappropriately high circulating and intrarenal angiotensin II levels during dietary salt loading exacerbate hypertension in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 2010;28:495–509. PubMed
Vanourková Z, Kramer HJ, Husková Z, et al. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J. Hypertens. 2006;24:2465–72. PubMed
Červenka L, Vanečková I, Husková Z, et al. Pivotal role of AT1A receptors in the development of two-kidney, one-clip hypertension: Study in AT1A receptor knockout mice. J. Hypertens. 2008;26:1379–89. PubMed PMC
Cao Z, Bonnet F, Davis B, Allen TJ, Cooper ME. Additive and anti-albuminuric effects of angiotensin-converting enzyme inhibition and angiotensin receptor antagonism in diabetic spontaneously hypertensive rats. Clin. Sci. 2001;100:591–9. PubMed
Fujihara CK, Velho M, Malheiros DM, Zatz R. An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney Int. 2005;67:1913–24. PubMed
Huskova Z, Kramer HJ, Thumova M, et al. Effects of anesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press. Res. 2006;29:74–83. PubMed
Husková Z, Kramer HJ, Vanourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J. Hypertens. 2006;24:517–27. PubMed
Varcabova S, Huskova Z, Kramer HJ, et al. Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin–angiotensin system. Clin. Exp. Pharmacol. Physiol. 2013;40:273–81. PubMed PMC
Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurements in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed
Nakano Y, Hirano T, Uehara K, et al. New rat model induced by anti-glomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progress to end-stage renal failure. Pathol. Int. 2008;58:361–70. PubMed
Lane PH, Steffes MW, Mauer MS. Estimation of glomerular volume: A comparison of four methods. Kidney Int. 1992;41:1085–9. PubMed
Epoxyeicosanoids in hypertension