The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula

. 2023 Dec ; 396 (12) : 3757-3773. [epub] 20230620

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37338578
Odkazy

PubMed 37338578
PubMed Central PMC10643302
DOI 10.1007/s00210-023-02561-y
PII: 10.1007/s00210-023-02561-y
Knihovny.cz E-zdroje

Heart failure (HF) has been declared as global pandemic and current therapies are still ineffective, especially in patients that develop concurrent cardio-renal syndrome. Considerable attention has been focused on the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway. In the current study, we aimed to investigate the effectiveness of sGC stimulator (BAY41-8543) with the same mode of action as vericiguat, for the treatment of heart failure (HF) with cardio-renal syndrome. As a model, we chose heterozygous Ren-2 transgenic rats (TGR), with high-output heart failure, induced by aorto-caval fistula (ACF). The rats were subjected into three experimental protocols to evaluate short-term effects of the treatment, impact on blood pressure, and finally the long-term survival lasting 210 days. As control groups, we used hypertensive sham TGR and normotensive sham HanSD rats. We have shown that the sGC stimulator effectively increased the survival of rats with HF in comparison to untreated animals. After 60 days of sGC stimulator treatment, the survival was still 50% compared to 8% in the untreated rats. One-week treatment with sGC stimulator increased the excretion of cGMP in ACF TGR (109 ± 28 nnmol/12 h), but the ACE inhibitor decreased it (-63 ± 21 nnmol/12 h). Moreover, sGC stimulator caused a decrease in SBP, but this effect was only temporary (day 0: 117 ± 3; day 2: 108 ± 1; day 14: 124 ± 2 mmHg). These results support the concept that sGC stimulators might represent a valuable class of drugs to battle heart failure especially with cardio-renal syndrome, but further studies are necessary.

Zobrazit více v PubMed

Abassi Z, Goltsman I, Karram T, et al (2011) Aortocaval fistula in rat: A unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol 2011:729497 10.1155/2011/729497 PubMed PMC

Andelova K, Szeiffova Bacova B, Sykora M, et al. Cardiac Cx43 signaling is enhanced and TGF-β1/SMAD2/3 suppressed in response to cold acclimation and modulated by thyroid status in hairless SHRM. Biomedicines. 2022;10(7):1707. doi: 10.3390/biomedicines10071707. PubMed DOI PMC

Armstrong PW, Pieske B, Anstrom KJ, et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2020;382:1883–1893. doi: 10.1056/NEJMoa1915928. PubMed DOI

Benova T, Viczenczova C, Radosinska J, et al. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethalarrhythmias. Can J Physiol Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI

Berliner D, Hänselmann A, Bauersachs J. The treatment of heart failure with reduced ejection fraction. Dtsch Arztebl Int. 2020;117:376–386. doi: 10.3238/arztebl.2020.0376. PubMed DOI PMC

Blanton RM. cGMP Signaling and Modulation in Heart Failure. J Cardiovasc Pharmacol. 2020;75:385–398. doi: 10.1097/FJC.0000000000000749. PubMed DOI PMC

Cautela J, Tartiere JM, Cohen-Solal A, et al. Management of low blood pressure in ambulatory heart failure with reduced ejection fraction patients. Eur J Heart Fail. 2020;22:1357–1365. doi: 10.1002/ejhf.1835. PubMed DOI PMC

Červenka L, Bíbová J, Husková Z, et al. Combined suppression of the intrarenal and circulating vasoconstrictor Renin-ACE-ANG II axis and augmentation of the vasodilator ACE2-ANG 1-7-Mas axis attenuates the systemic hypertension in Ren-2 transgenic rats exposed to chronic hypoxia. Physiol Res. 2015;64:11–24. doi: 10.33549/physiolres.932842. PubMed DOI

Červenka L, Melenovský V, Husková Z, et al. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI

Ciccarelli M, Dawson D, Falcao-Pires I, et al. Reciprocal organ interactions during heart failure: A position paper from the ESC Working Group on Myocardial Function. Cardiovasc Res. 2021;117:2416–2433. doi: 10.1093/cvr/cvab009. PubMed DOI PMC

Cordwin DJ, Berei TJ, Pogue KT. The Role of sGC Stimulators and Activators in Heart Failure With Reduced Ejection Fraction. J Cardiovasc Pharmacol Ther. 2021;26:593–600. doi: 10.1177/10742484211042706. PubMed DOI

Curnow AC, Gonsalez SR, Gogulamudi VR, et al (2020) Low nitric oxide bioavailability increases renin production in the collecting duct. Front Physiol 11:559341 10.3389/fphys.2020.559341 PubMed PMC

Curtis MJ, Alexander S, Cirino G, et al. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol. 2018;175:987–993. doi: 10.1111/bph.14153. PubMed DOI PMC

Danik SB, Liu F, Zhang J, et al. Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res. 2004;95:1035–1041. doi: 10.1161/01.RES.0000148664.33695.2a. PubMed DOI PMC

Díez J. Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens (greenwich) 2007;9:546–550. doi: 10.1111/j.1524-6175.2007.06626.x. PubMed DOI PMC

Egan Benova T, Szeiffova Bacova B, Viczenczova C, et al (2016) MyocardiaL connexin-43 is implicated in the prevention of malignant arrhythmia in rats suffering from essential hypertension. In: Update on Essential Hypertension. IntechOpen, London

Farah C, Michel LYM, Balligand JL. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol. 2018;15:292–316. doi: 10.1038/nrcardio.2017.224. PubMed DOI

Follmann M, Griebenow N, Hahn MG, et al. The chemistry and biology of soluble guanylate cyclase stimulators and activators. Angew Chemie - Int Ed. 2013;52:9442–9462. doi: 10.1002/anie.201302588. PubMed DOI

Gawrys O, Baranowska I, Gawarecka K, et al. Innovative lipid-based carriers containing cationic derivatives of polyisoprenoid alcohols augment the antihypertensive effectiveness of candesartan in spontaneously hypertensive rats. Hypertens Res. 2018;41:234–245. doi: 10.1038/s41440-018-0011-y. PubMed DOI

Gawrys O, Husková Z, Baranowska I, et al. Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. J Hypertens. 2020;38:1802–1810. doi: 10.1097/HJH.0000000000002462. PubMed DOI

Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e895–e1032. doi: 10.1161/CIR.0000000000001063. PubMed DOI

Honetschlagerová Z, Škaroupková P, Kikerlová S, et al. Effects of renal sympathetic denervation on the course of congestive heart failure combined with chronic kidney disease: Insight from studies with fawn-hooded hypertensive rats with volume overload induced using aorto-caval fistula. Clin Exp Hypertens. 2021;43:522–535. doi: 10.1080/10641963.2021.1907398. PubMed DOI

Honetschlägerová Z, Hejnová L, Novotný J, et al. Effects of renal denervation on the enhanced renal vascular responsiveness to angiotensin II in high-output heart failure: Angiotensin II receptor binding assessment and functional studies in ren-2 transgenic hypertensive rats. Biomedicines. 2021;9(12):1803. doi: 10.3390/biomedicines9121803. PubMed DOI PMC

Husková Z, Kramer HJ, Thumová M, et al. Effects of anesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press Res. 2006;29:74–83. doi: 10.1159/000092981. PubMed DOI

Husková Z, Kramer H, Vaňourková Z, et al. Effects of dietary salt load and salt depletion on the course of hypertension and angiotensin II levels in male and female heterozygous Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:45–55. doi: 10.1159/000099028. PubMed DOI

Husková Z, Kopkan L, Červenková L, et al. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1–7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2016;43:438–449. doi: 10.1111/1440-1681.12553. PubMed DOI

Kala P, Gawrys O, Miklovič M, et al. Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension. J Hypertens. 2023;41:99–114. doi: 10.1097/HJH.0000000000003307. PubMed DOI PMC

Kala P, Miklovič M, Jíchová Š, et al (2021) Effects of epoxyeicosatrienoic acid-enhancing therapy on the course of congestive heart failure in angiotensin ii-dependent rat hypertension: From mrna analysis towards functional in vivo evaluation. Biomedicines 9(8):1053 10.3390/biomedicines9081053 PubMed PMC

Kratky V, Kopkan L, Kikerlova S, et al. The role of renal vascular reactivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press Res. 2018;43:1730–1741. doi: 10.1159/000495391. PubMed DOI

Kratky V, Vanourkova Z, Sykora M, et al. AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats. Sci Rep. 2021;11:4271. doi: 10.1038/s41598-021-83906-6. PubMed DOI PMC

Krishnan SM, Kraehling JR, Eitner F, et al. The impact of the nitric oxide (no)/soluble guanylyl cyclase (sGC) signaling cascade on kidney health and disease: A preclinical perspective. Int J Mol Sci. 2018;19(6):1712. doi: 10.3390/ijms19061712. PubMed DOI PMC

Kujal P, Čertíková Chábová V, Škaroupková P, et al. Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Pharmacol Physiol. 2014;41:227–237. doi: 10.1111/1440-1681.12204. PubMed DOI PMC

Kurtz A, Wagner C. Role of nitric oxide in the control of renin secretion. Am J Physiol - Ren Physiol. 1998;275:F849–F862. doi: 10.1152/ajprenal.1998.275.6.f849. PubMed DOI

Lam CSP, Mulder H, Lopatin Y et al (2021) Blood pressure and safety events with vericiguat in the VICTORIA trial. J Am Heart Assoc 10(22):e021094 10.1161/JAHA.121.021094 PubMed PMC

Liu R, Kang Y, Chen L. Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Nat Commun. 2021;12:5492. doi: 10.1038/s41467-021-25617-0. PubMed DOI PMC

Lojda Z, Gutmann E. Histochemistry of some acid hydrolases in striated muscles of the rat. Histochemistry. 1976;49:337–342. doi: 10.1007/BF00496137. PubMed DOI

McCullough PA, Amin A, Pantalone KM, Ronco C. Cardiorenal Nexus: A Review With Focus on Combined Chronic Heart and Kidney Failure, and Insights From Recent Clinical Trials. J Am Heart Assoc. 2022;11:1–9. doi: 10.1161/JAHA.121.024139. PubMed DOI PMC

McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI

Melenovsky V, Skaroupkova P, Benes J, et al. The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press Res. 2012;35:167–173. doi: 10.1159/000331562. PubMed DOI

Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: From pathophysiology to treatment strategies. Eur Heart J. 2017;38:1872–1882. doi: 10.1093/eurheartj/ehx035. PubMed DOI

Murphy SP, Ibrahim NE, Januzzi JL. Heart Failure with Reduced Ejection Fraction: A Review. JAMA - J Am Med Assoc. 2020;324:488–504. doi: 10.1001/jama.2020.10262. PubMed DOI

Nakano Y, Hirano T, Uehara K, et al. New rat model induced by anti-glomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progresses to end-stage renal failure. Pathol Int. 2008;58:361–370. doi: 10.1111/j.1440-1827.2008.02237.x. PubMed DOI

Numata G, Takimoto E. Cyclic GMP and PKG Signaling in Heart Failure. Front Pharmacol. 2022;13:1–11. doi: 10.3389/fphar.2022.792798. PubMed DOI PMC

Ouwerkerk W, Voors AA, Anker SD, et al. Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: A prospective European study. Eur Heart J. 2017;38:1883–1890. doi: 10.1093/eurheartj/ehx026. PubMed DOI

Pelouch V, Dixon IMC, Sethi R, Dhalla NS. Alteration of collagenous protein profile in congestive heart failure secondary to myocardial infarction. Mol Cell Biochem. 1993;129:121–131. doi: 10.1007/BF00926360. PubMed DOI

Persson PB. Renin: Origin, secretion and synthesis. J Physiol. 2003;552:667–671. doi: 10.1113/jphysiol.2003.049890. PubMed DOI PMC

Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. Circulation. 2019;139:E840–E878. doi: 10.1161/CIR.0000000000000664. PubMed DOI

Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI

Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res. 2019;115:1838–1849. doi: 10.1093/cvr/cvz161. PubMed DOI PMC

Roberto B, Evora P, M. Evora P, C. Celotto A, , et al. Cardiovascular Therapeutics Targets on the NO–sGC–cGMP Signaling Pathway: A Critical Overview. Curr Drug Targets. 2012;13:1207–1214. doi: 10.2174/138945012802002348. PubMed DOI

Sandner P, Follmann M, Becker-Pelster E et al (2021a) Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol Oct 2:1–22. 10.1111/bph.15698 PubMed

Sandner P, Zimmer DP, Milne GT et al (2021b) Soluble guanylate cyclase stimulators and activators. In: Schmidt HHHW, Ghezzi P, Cuadrado A (eds) Reactive Oxygen Species. Handbook of Experimental Pharmacology, vol. 264. Springer, Cham, pp 355–394 PubMed

Schultz-Hector S, Balz K, Bohm M, et al. Cellular localization of endothelial alkaline phosphatase reaction product and enzyme protein in the myocardium. J Histochem Cytochem. 1993;41:1813–1821. doi: 10.1177/41.12.8245430. PubMed DOI

Sedláková L, Čertíková Chábová V, Doleželová Š, et al. Renin–angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens. 2017;39:183–195. doi: 10.1080/10641963.2016.1235184. PubMed DOI

Sharkovska Y, Kalk P, Lawrenz B, et al. Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models. J Hypertens. 2010;28:1666–1675. doi: 10.1097/HJH.0b013e32833b558c. PubMed DOI

Sharma A, Verma S, Bhatt DL, et al. Optimizing Foundational Therapies in Patients With HFrEF: How Do We Translate These Findings Into Clinical Care? JACC Basic to Transl Sci. 2022;7:504–517. doi: 10.1016/j.jacbts.2021.10.018. PubMed DOI PMC

Simmonds SJ, Cuijpers I, Heymans S, Jones EAV (2020) Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells 9(1):242. 10.3390/cells9010242 PubMed PMC

Singh P, Vijayakumar S, Kalogeroupoulos A, Butler J. Multiple Avenues of Modulating the Nitric Oxide Pathway in Heart Failure Clinical Trials. Curr Heart Fail Rep. 2018;15:44–52. doi: 10.1007/s11897-018-0383-y. PubMed DOI

Sobieraj P, Nilsson PM, Kahan T. Heart Failure Events in a Clinical Trial on Arterial Hypertension: New Insights into the SPRINT Trial. Hypertension. 2021;78:1241–1247. doi: 10.1161/HYPERTENSIONAHA.121.17360. PubMed DOI

Sporková A, Jíchová S, Husková Z, et al. Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2014;41:1003–1013. doi: 10.1111/1440-1681.12310. PubMed DOI PMC

Stasch JP, Becker EM, Alonso-Alija C, et al. NO-independent regulatory site on soluble guanylate cyclase. Nature. 2001;410:212–215. doi: 10.1038/35065611. PubMed DOI

Stasch JP, Alonso-Alija C, Apeler H, et al. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41–8543: In vitro studies. Br J Pharmacol. 2002;135:333–343. doi: 10.1038/sj.bjp.0704484. PubMed DOI PMC

Stasch JP, Dembowsky K, Perzborn E, et al. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41–8543: In vivo studies. Br J Pharmacol. 2002;135:344–355. doi: 10.1038/sj.bjp.0704483. PubMed DOI PMC

Stasch JP, Schlossmann J, Hocher B. Renal effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Curr Opin Pharmacol. 2015;21:95–104. doi: 10.1016/j.coph.2014.12.014. PubMed DOI

Sykora M, Kamocsaiova L, Egan Benova T, et al. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of wistar rats: A pilot study. Can J Physiol Pharmacol. 2019;97:829–836. doi: 10.1139/cjpp-2018-0740. PubMed DOI

Sykora M, Kratky V, Kopkan L, Tribulova N. Anti-Fibrotic Potential of Angiotensin (1–7) in Hemodynamically Overloaded Rat Heart. Int J Mol Sci. 2023;24:3490. doi: 10.3390/ijms24043490. PubMed DOI PMC

Szeiffová Bačova B, Egan Beňová T, Viczenczová C, et al (2016) Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol Res 65 Suppl 1:S77–90 10.33549/physiolres.933413 PubMed

Xia J, Hui N, Tian L, et al. Development of vericiguat: The first soluble guanylate cyclase (sGC) stimulator launched for heart failure with reduced ejection fraction (HFrEF) Biomed Pharmacother. 2022;149:1–12. doi: 10.1016/j.biopha.2022.112894. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Soluble Guanylate Cyclase Stimulator, BAY41-8543: A Promising Approach for the Treatment of Chronic Heart Failure Caused by Pressure and Volume Overload

. 2025 Apr ; 13 (2) : e70087.

Transgenic rat with ubiquitous expression of angiotensin-(1-7)-producing fusion protein: a new tool to study the role of protective arm of the renin-angiotensin system in the pathophysiology of cardio-renal diseases

. 2025 Jan ; 48 (1) : 336-352. [epub] 20241113

Effects of renal denervation on the course of cardiorenal syndrome: insight from studies with fawn-hooded hypertensive rats

. 2024 Dec 31 ; 73 (S3) : S737-S754.

Characterization of a new model of chemotherapy-induced heart failure with reduced ejection fraction and nephrotic syndrome in Ren-2 transgenic rats

. 2024 Nov ; 47 (11) : 3126-3146. [epub] 20240909

Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula

. 2024 Apr ; 47 (4) : 998-1016. [epub] 20240202

Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats?

. 2023 Oct ; 46 (10) : 2340-2355. [epub] 20230817

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace