Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2/0002/20, 2/0158/19
VEGA grants
18-0548, 19-0317
APVV grants
26230120009
EU Structural Fund ITMS
PubMed
35885012
PubMed Central
PMC9313296
DOI
10.3390/biomedicines10071707
PII: biomedicines10071707
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac Cx43, cold acclimation, extracellular matrix, hairless SHRM, thyroid hormones,
- Publikační typ
- časopisecké články MeSH
The hearts of spontaneously hypertensive rats (SHR) are prone to malignant arrhythmias, mainly due to disorders of electrical coupling protein Cx43 and the extracellular matrix. Cold acclimation may induce cardio-protection, but the underlying mechanisms remain to be elucidated. We aimed to explore whether the adaptation of 9-month-old hairless SHRM to cold impacts the fundamental cardiac pro-arrhythmia factors, as well as the response to the thyroid status. There were no significant differences in the registered biometric, redox and blood lipids parameters between hairless (SHRM) and wild type SHR. Prominent findings revealed that myocardial Cx43 and its variant phosphorylated at serine 368 were increased, while an abnormal cardiomyocyte Cx43 distribution was attenuated in hairless SHRM vs. wild type SHR males and females. Moreover, the level of β-catenin, ensuring mechanoelectrical coupling, was increased as well, while extracellular matrix collagen-1 and hydroxyproline were lower and the TGF-β1 and SMAD2/3 pathway was suppressed in hairless SHRM males compared to the wild type strain. Of interest, the extracellular matrix remodeling was less pronounced in females of both hypertensive strains. There were no apparent differences in response to the hypothyroid or hyperthyroid status between SHR strains concerning the examined markers. Our findings imply that hairless SHRM benefit from cold acclimation due to the attenuation of the hypertension-induced adverse downregulation of Cx43 and upregulation of extracellular matrix proteins.
Centre of Experimental Medicine v v i Slovak Academy of Sciences 84104 Bratislava Slovakia Republic
Institute of Physiology v v i Academy of Sciences of the Czech Republic 14220 Prague Czech Republic
Zobrazit více v PubMed
Morrison S.F. Central neural pathways for thermoregulation. Front. Biosci. 2011;16:74. doi: 10.2741/3677. PubMed DOI PMC
Horie T., Nakao T., Miyasaka Y., Nishino T., Matsumura S., Nakazeki F., Ide Y., Kimura M., Tsuji S., Rodriguez R.R., et al. microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nat. Commun. 2021;12:843. doi: 10.1038/s41467-021-21107-5. PubMed DOI PMC
Yau W.W., Yen P.M. Thermogenesis in adipose tissue activated by thyroid hormone. Int. J. Mol. Sci. 2020;21:3020. doi: 10.3390/ijms21083020. PubMed DOI PMC
Tsibulnikov S., Maslov L., Voronkov N., Oeltgen P. Thyroid hormones and the mechanisms of adaptation to cold. Hormones. 2020;19:329–339. doi: 10.1007/s42000-020-00200-2. PubMed DOI
Sentis S.C., Oelkrug R., Mittag J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr. Connect. 2021;10:R106–R115. doi: 10.1530/EC-20-0562. PubMed DOI PMC
Kralova Lesna I., Rychlikova J., Vavrova L., Vybiral S. Could human cold adaptation decrease the risk of cardiovascular disease? J. Therm. Biol. 2015;52:192–198. doi: 10.1016/j.jtherbio.2015.07.007. PubMed DOI
Tibenska V., Benesova A., Vebr P., Liptakova A., Hejnová L., Elsnicová B., Drahota Z., Hornikova D., Galatík F., Kolar D., et al. Gradual cold acclimation induces cardioprotection without affecting β-adrenergic receptor-mediated adenylyl cyclase signaling. J. Appl. Physiol. 2020;128:1023–1032. doi: 10.1152/japplphysiol.00511.2019. PubMed DOI
Rodríguez-Sinovas A., Sánchez J.A., Valls-Lacalle L., Consegal M., Ferreira-González I. Connexins in the heart: Regulation, function and involvement in cardiac disease. Int. J. Mol. Sci. 2021;22:4413. doi: 10.3390/ijms22094413. PubMed DOI PMC
Andelova K., Benova T.E., Bacova B.S., Sykora M., Prado N.J., Diez E.R., Hlivak P., Tribulova N. Cardiac connexin-43 hemichannels and pannexin1 channels: Provocative antiarrhythmic targets. Int. J. Mol. Sci. 2021;22:260. doi: 10.3390/ijms22010260. PubMed DOI PMC
Tribulova N., Szeiffova Bacova B., Benova T., Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. PubMed DOI
Dhein S., Salameh A. Remodeling of cardiac gap junctional cell–cell coupling. Cells. 2021;10:2422. doi: 10.3390/cells10092422. PubMed DOI PMC
Jansen J.A., Van Veen T.A.B., De Jong S., Van Der Nagel R., Van Stuijvenberg L., Driessen H., Labzowski R., Oefner C.M., Bosch A.A., Nguyen T.Q., et al. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity. Circ. Arrhythmia Electrophysiol. 2012;5:380–390. doi: 10.1161/CIRCEP.111.966580. PubMed DOI
Egan Benova T., Szeiffova Bacova B., Viczenczova C., Diez E., Barancik M., Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol. Res. 2016;65:S29–S42. doi: 10.33549/physiolres.933391. PubMed DOI
Saitongdee P., Milner P., Becker D.L., Knight G.E., Burnstock G. Increased connexin43 gap junction protein in hamster cardiomyocytes during cold acclimatization and hibernation. Cardiovasc. Res. 2000;47:108–115. doi: 10.1016/S0008-6363(00)00051-1. PubMed DOI
Fedorov V.V., Li L., Glukhov A., Shishkina I., Aliev R.R., Mikheeva T., Nikolski V.P., Rosenshtraukh L.V., Efimov I.R. Hibernator Citellus undulatus maintains safe cardiac conduction and is protected against tachyarrhythmias during extreme hypothermia: Possible role of Cx43 and Cx45 up-regulation. Heart Rhythm. 2005;2:966–975. doi: 10.1016/j.hrthm.2005.06.012. PubMed DOI
Trnovská J., Šilhavỳ J., Zídek V., Šimáková M., Mlejnek P., Landa V., Eigner S., Eigner Henke K., Škop V., Oliyarnyk O., et al. Gender-related effects on substrate utilization and metabolic adaptation in hairless spontaneously hypertensive rat. Physiol. Res. 2015;64:51–60. doi: 10.33549/physiolres.932823. PubMed DOI
Sykora M., Bacova B.S., Benova T.E., Barancik M., Zurmanova J., Rauchova H., Weismann P., Pavelka S., Kurahara L.H., Slezak J., et al. Cardiac cx43 and ECM responses to altered thyroid status are blunted in spontaneously hypertensive versus normotensive rats. Int. J. Mol. Sci. 2019;20:3758. doi: 10.3390/ijms20153758. PubMed DOI PMC
Behuliak M., Vavrəínová A., Bencze M., Polgárová K., Ergang P., Kunesə J., Vaneəcəková I., Zicha J. Ontogenetic changes in contribution of calcium sensitization and calciumentry to blood pressure maintenance ofWistar-Kyoto and spontaneously hypertensive rats. J. Hypertens. 2015;33:2443–2454. doi: 10.1097/HJH.0000000000000746. PubMed DOI
Pavelka S. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism. Physiol. Res. 2014;63:S133–S140. doi: 10.33549/physiolres.932621. PubMed DOI
Rauchová H., Vokurková M., Pavelka S., Vaněčková I., Tribulová N., Soukup T. Red palm oil supplementation does not increase blood glucose or serum lipids levels in wistar rats with different thyroid status. Physiol. Res. 2018;67:307–315. doi: 10.33549/physiolres.933834. PubMed DOI
Lojda Z. Studies on dipeptidyl(amino)peptidase IV (glycyl-proline naphthylamidase) Histochemistry. 1979;59:153–166. doi: 10.1007/BF00495663. PubMed DOI
Bacova B.S., Viczenczova C., Andelova K., Sykora M., Chaudagar K., Barancik M., Adamcova M., Knezl V., Benova T.E., Weismann P., et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants. 2020;9:546. doi: 10.3390/antiox9060546. PubMed DOI PMC
Kesava Reddy G., Enwemeka C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI
Trease A.J., Capuccino J.M.V., Contreras J., Harris A.L., Sorgen P.L. Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization. J. Mol. Cell. Cardiol. 2017;111:69–80. doi: 10.1016/j.yjmcc.2017.07.010. PubMed DOI PMC
Zheng Q., Chen P., Xu Z., Li F., Yi X.P. Expression and redistribution of β-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. J. Mol. Histol. 2013;44:565–573. doi: 10.1007/s10735-013-9507-6. PubMed DOI
Axelsen L.N., Calloe K., Holstein-Rathlou N.-H., Nielsen M.S. Managing the complexity of communication: Regulation of gap junctions by post-translational modification. Front. Pharmacol. 2013;4:130. doi: 10.3389/fphar.2013.00130. PubMed DOI PMC
Solan J.L., Lampe P.D. Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim. Biophys. Acta-Biomembr. 2018;1860:83–90. doi: 10.1016/j.bbamem.2017.04.008. PubMed DOI PMC
Dubois-Deruy E., Gelinas R., Beauloye C., Esfahani H., Michel L.Y.M., Dessy C., Bertrand L., Balligand J.L. Beta 3 adrenoreceptors protect from hypertrophic remodelling through AMP-activated protein kinase and autophagy. ESC Heart Fail. 2020;7:920–932. doi: 10.1002/ehf2.12648. PubMed DOI PMC
Hermida N., Michel L., Esfahani H., Dubois-Deruy E., Hammond J., Bouzin C., Markl A., Colin H., Van Steenbergen A., De Meester C., et al. Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling. Eur. Heart J. 2018;39:888–897. doi: 10.1093/eurheartj/ehx366. PubMed DOI
Lambeir A.M., Durinx C., Scharpé S., De Meester I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 2003;40:209–294. doi: 10.1080/713609354. PubMed DOI
Wang S.C., Wang X.Y., Liu C.T., Chou R.H., Chen Z.B., Huang P.H., Lin S.J. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Ameliorates Endothelial Inflammation and Microvascular Thrombosis in a Sepsis Mouse Model. Int. J. Mol. Sci. 2022;23:3065. doi: 10.3390/ijms23063065. PubMed DOI PMC
Andelova K., Bacova B.S., Sykora M., Hlivak P., Barancik M., Tribulova N. Mechanisms Underlying Antiarrhythmic Properties of Cardioprotective Agents Impacting Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2022;23:1416. doi: 10.3390/ijms23031416. PubMed DOI PMC
Suda M., Shimizu I., Yoshida Y., Hayashi Y., Ikegami R., Katsuumi G., Wakasugi T., Yoshida Y., Okuda S., Soga T., et al. Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by up-regulating the FGF-2/EGR-1 pathway. PLoS ONE. 2017;12:e182422. doi: 10.1371/journal.pone.0182422. PubMed DOI PMC
Handa B.S., Li X., Baxan N., Roney C.H., Shchendrygina A., Mansfield C.A., Jabbour R.J., Pitcher D.S., Chowdhury R.A., Peters N.S., et al. Ventricular fibrillation mechanism and global fibrillatory organization are determined by gap junction coupling and fibrosis pattern. Cardiovasc. Res. 2021;117:1078–1090. doi: 10.1093/cvr/cvaa141. PubMed DOI PMC
Bao X., Reuss L., Altenberg G.A. Regulation of Purified and Reconstituted Connexin 43 Hemichannels by Protein Kinase C-mediated Phosphorylation of Serine 368. J. Biol. Chem. 2004;279:20058–20066. doi: 10.1074/jbc.M311137200. PubMed DOI
Swope D., Cheng L., Gao E., Li J., Radice G.L. Loss of Cadherin-Binding Proteins β-Catenin and Plakoglobin in the Heart Leads to Gap Junction Remodeling and Arrhythmogenesis. Mol. Cell. Biol. 2012;32:1056–1067. doi: 10.1128/MCB.06188-11. PubMed DOI PMC
Egan Benova T., Viczenczova C., Szeiffova Bacova B., Zurmanova J., Knezl V., Andelova K., Tribulova N. Omacor Protects Normotensive and Hypertensive Rats Exposed to Continuous Light from Increased Risk to Malignant Cardiac Arrhythmias. Mar. Drugs. 2021;19:659. doi: 10.3390/md19120659. PubMed DOI PMC
Grohé C., Kahlert S., Löbbert K., Stimpel M., Karas R.H., Vetter H., Neyses L. Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett. 1997;416:107–112. doi: 10.1016/S0014-5793(97)01179-4. PubMed DOI
Zheng L., Trease A.J., Katsurada K., Spagnol G., Li H., Shi W., Duan B., Patel K.P., Sorgen P.L. Inhibition of Pyk2 and Src activity improves Cx43 gap junction intercellular communication. J. Mol. Cell. Cardiol. 2020;149:27–40. doi: 10.1016/j.yjmcc.2020.09.004. PubMed DOI PMC
Salameh A., Dhein S. Adrenergic control of cardiac gap junction function and expression. Naunyn. Schmiedebergs. Arch. Pharmacol. 2011;383:331–346. doi: 10.1007/s00210-011-0603-4. PubMed DOI
Tribulova N., Kurahara L.H., Hlivak P., Hirano K., Bacova B.S. Pro-arrhythmic signaling of thyroid hormones and its relevance in subclinical hyperthyroidism. Int. J. Mol. Sci. 2020;21:2844. doi: 10.3390/ijms21082844. PubMed DOI PMC
Bačová B.S., Vinczenzová C., Žurmanová J., Kašparová D., Knezl V., Beňová T.E., Pavelka S., Soukup T., Tribulová N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem. Cell Biol. 2017;147:63–73. doi: 10.1007/s00418-016-1488-6. PubMed DOI
Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart