Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM

. 2022 Jul 14 ; 10 (7) : . [epub] 20220714

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35885012

Grantová podpora
2/0002/20, 2/0158/19 VEGA grants
18-0548, 19-0317 APVV grants
26230120009 EU Structural Fund ITMS

Odkazy

PubMed 35885012
PubMed Central PMC9313296
DOI 10.3390/biomedicines10071707
PII: biomedicines10071707
Knihovny.cz E-zdroje

The hearts of spontaneously hypertensive rats (SHR) are prone to malignant arrhythmias, mainly due to disorders of electrical coupling protein Cx43 and the extracellular matrix. Cold acclimation may induce cardio-protection, but the underlying mechanisms remain to be elucidated. We aimed to explore whether the adaptation of 9-month-old hairless SHRM to cold impacts the fundamental cardiac pro-arrhythmia factors, as well as the response to the thyroid status. There were no significant differences in the registered biometric, redox and blood lipids parameters between hairless (SHRM) and wild type SHR. Prominent findings revealed that myocardial Cx43 and its variant phosphorylated at serine 368 were increased, while an abnormal cardiomyocyte Cx43 distribution was attenuated in hairless SHRM vs. wild type SHR males and females. Moreover, the level of β-catenin, ensuring mechanoelectrical coupling, was increased as well, while extracellular matrix collagen-1 and hydroxyproline were lower and the TGF-β1 and SMAD2/3 pathway was suppressed in hairless SHRM males compared to the wild type strain. Of interest, the extracellular matrix remodeling was less pronounced in females of both hypertensive strains. There were no apparent differences in response to the hypothyroid or hyperthyroid status between SHR strains concerning the examined markers. Our findings imply that hairless SHRM benefit from cold acclimation due to the attenuation of the hypertension-induced adverse downregulation of Cx43 and upregulation of extracellular matrix proteins.

Zobrazit více v PubMed

Morrison S.F. Central neural pathways for thermoregulation. Front. Biosci. 2011;16:74. doi: 10.2741/3677. PubMed DOI PMC

Horie T., Nakao T., Miyasaka Y., Nishino T., Matsumura S., Nakazeki F., Ide Y., Kimura M., Tsuji S., Rodriguez R.R., et al. microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nat. Commun. 2021;12:843. doi: 10.1038/s41467-021-21107-5. PubMed DOI PMC

Yau W.W., Yen P.M. Thermogenesis in adipose tissue activated by thyroid hormone. Int. J. Mol. Sci. 2020;21:3020. doi: 10.3390/ijms21083020. PubMed DOI PMC

Tsibulnikov S., Maslov L., Voronkov N., Oeltgen P. Thyroid hormones and the mechanisms of adaptation to cold. Hormones. 2020;19:329–339. doi: 10.1007/s42000-020-00200-2. PubMed DOI

Sentis S.C., Oelkrug R., Mittag J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr. Connect. 2021;10:R106–R115. doi: 10.1530/EC-20-0562. PubMed DOI PMC

Kralova Lesna I., Rychlikova J., Vavrova L., Vybiral S. Could human cold adaptation decrease the risk of cardiovascular disease? J. Therm. Biol. 2015;52:192–198. doi: 10.1016/j.jtherbio.2015.07.007. PubMed DOI

Tibenska V., Benesova A., Vebr P., Liptakova A., Hejnová L., Elsnicová B., Drahota Z., Hornikova D., Galatík F., Kolar D., et al. Gradual cold acclimation induces cardioprotection without affecting β-adrenergic receptor-mediated adenylyl cyclase signaling. J. Appl. Physiol. 2020;128:1023–1032. doi: 10.1152/japplphysiol.00511.2019. PubMed DOI

Rodríguez-Sinovas A., Sánchez J.A., Valls-Lacalle L., Consegal M., Ferreira-González I. Connexins in the heart: Regulation, function and involvement in cardiac disease. Int. J. Mol. Sci. 2021;22:4413. doi: 10.3390/ijms22094413. PubMed DOI PMC

Andelova K., Benova T.E., Bacova B.S., Sykora M., Prado N.J., Diez E.R., Hlivak P., Tribulova N. Cardiac connexin-43 hemichannels and pannexin1 channels: Provocative antiarrhythmic targets. Int. J. Mol. Sci. 2021;22:260. doi: 10.3390/ijms22010260. PubMed DOI PMC

Tribulova N., Szeiffova Bacova B., Benova T., Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. PubMed DOI

Dhein S., Salameh A. Remodeling of cardiac gap junctional cell–cell coupling. Cells. 2021;10:2422. doi: 10.3390/cells10092422. PubMed DOI PMC

Jansen J.A., Van Veen T.A.B., De Jong S., Van Der Nagel R., Van Stuijvenberg L., Driessen H., Labzowski R., Oefner C.M., Bosch A.A., Nguyen T.Q., et al. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity. Circ. Arrhythmia Electrophysiol. 2012;5:380–390. doi: 10.1161/CIRCEP.111.966580. PubMed DOI

Egan Benova T., Szeiffova Bacova B., Viczenczova C., Diez E., Barancik M., Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol. Res. 2016;65:S29–S42. doi: 10.33549/physiolres.933391. PubMed DOI

Saitongdee P., Milner P., Becker D.L., Knight G.E., Burnstock G. Increased connexin43 gap junction protein in hamster cardiomyocytes during cold acclimatization and hibernation. Cardiovasc. Res. 2000;47:108–115. doi: 10.1016/S0008-6363(00)00051-1. PubMed DOI

Fedorov V.V., Li L., Glukhov A., Shishkina I., Aliev R.R., Mikheeva T., Nikolski V.P., Rosenshtraukh L.V., Efimov I.R. Hibernator Citellus undulatus maintains safe cardiac conduction and is protected against tachyarrhythmias during extreme hypothermia: Possible role of Cx43 and Cx45 up-regulation. Heart Rhythm. 2005;2:966–975. doi: 10.1016/j.hrthm.2005.06.012. PubMed DOI

Trnovská J., Šilhavỳ J., Zídek V., Šimáková M., Mlejnek P., Landa V., Eigner S., Eigner Henke K., Škop V., Oliyarnyk O., et al. Gender-related effects on substrate utilization and metabolic adaptation in hairless spontaneously hypertensive rat. Physiol. Res. 2015;64:51–60. doi: 10.33549/physiolres.932823. PubMed DOI

Sykora M., Bacova B.S., Benova T.E., Barancik M., Zurmanova J., Rauchova H., Weismann P., Pavelka S., Kurahara L.H., Slezak J., et al. Cardiac cx43 and ECM responses to altered thyroid status are blunted in spontaneously hypertensive versus normotensive rats. Int. J. Mol. Sci. 2019;20:3758. doi: 10.3390/ijms20153758. PubMed DOI PMC

Behuliak M., Vavrəínová A., Bencze M., Polgárová K., Ergang P., Kunesə J., Vaneəcəková I., Zicha J. Ontogenetic changes in contribution of calcium sensitization and calciumentry to blood pressure maintenance ofWistar-Kyoto and spontaneously hypertensive rats. J. Hypertens. 2015;33:2443–2454. doi: 10.1097/HJH.0000000000000746. PubMed DOI

Pavelka S. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism. Physiol. Res. 2014;63:S133–S140. doi: 10.33549/physiolres.932621. PubMed DOI

Rauchová H., Vokurková M., Pavelka S., Vaněčková I., Tribulová N., Soukup T. Red palm oil supplementation does not increase blood glucose or serum lipids levels in wistar rats with different thyroid status. Physiol. Res. 2018;67:307–315. doi: 10.33549/physiolres.933834. PubMed DOI

Lojda Z. Studies on dipeptidyl(amino)peptidase IV (glycyl-proline naphthylamidase) Histochemistry. 1979;59:153–166. doi: 10.1007/BF00495663. PubMed DOI

Bacova B.S., Viczenczova C., Andelova K., Sykora M., Chaudagar K., Barancik M., Adamcova M., Knezl V., Benova T.E., Weismann P., et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants. 2020;9:546. doi: 10.3390/antiox9060546. PubMed DOI PMC

Kesava Reddy G., Enwemeka C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI

Trease A.J., Capuccino J.M.V., Contreras J., Harris A.L., Sorgen P.L. Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization. J. Mol. Cell. Cardiol. 2017;111:69–80. doi: 10.1016/j.yjmcc.2017.07.010. PubMed DOI PMC

Zheng Q., Chen P., Xu Z., Li F., Yi X.P. Expression and redistribution of β-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. J. Mol. Histol. 2013;44:565–573. doi: 10.1007/s10735-013-9507-6. PubMed DOI

Axelsen L.N., Calloe K., Holstein-Rathlou N.-H., Nielsen M.S. Managing the complexity of communication: Regulation of gap junctions by post-translational modification. Front. Pharmacol. 2013;4:130. doi: 10.3389/fphar.2013.00130. PubMed DOI PMC

Solan J.L., Lampe P.D. Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim. Biophys. Acta-Biomembr. 2018;1860:83–90. doi: 10.1016/j.bbamem.2017.04.008. PubMed DOI PMC

Dubois-Deruy E., Gelinas R., Beauloye C., Esfahani H., Michel L.Y.M., Dessy C., Bertrand L., Balligand J.L. Beta 3 adrenoreceptors protect from hypertrophic remodelling through AMP-activated protein kinase and autophagy. ESC Heart Fail. 2020;7:920–932. doi: 10.1002/ehf2.12648. PubMed DOI PMC

Hermida N., Michel L., Esfahani H., Dubois-Deruy E., Hammond J., Bouzin C., Markl A., Colin H., Van Steenbergen A., De Meester C., et al. Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling. Eur. Heart J. 2018;39:888–897. doi: 10.1093/eurheartj/ehx366. PubMed DOI

Lambeir A.M., Durinx C., Scharpé S., De Meester I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 2003;40:209–294. doi: 10.1080/713609354. PubMed DOI

Wang S.C., Wang X.Y., Liu C.T., Chou R.H., Chen Z.B., Huang P.H., Lin S.J. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Ameliorates Endothelial Inflammation and Microvascular Thrombosis in a Sepsis Mouse Model. Int. J. Mol. Sci. 2022;23:3065. doi: 10.3390/ijms23063065. PubMed DOI PMC

Andelova K., Bacova B.S., Sykora M., Hlivak P., Barancik M., Tribulova N. Mechanisms Underlying Antiarrhythmic Properties of Cardioprotective Agents Impacting Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2022;23:1416. doi: 10.3390/ijms23031416. PubMed DOI PMC

Suda M., Shimizu I., Yoshida Y., Hayashi Y., Ikegami R., Katsuumi G., Wakasugi T., Yoshida Y., Okuda S., Soga T., et al. Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by up-regulating the FGF-2/EGR-1 pathway. PLoS ONE. 2017;12:e182422. doi: 10.1371/journal.pone.0182422. PubMed DOI PMC

Handa B.S., Li X., Baxan N., Roney C.H., Shchendrygina A., Mansfield C.A., Jabbour R.J., Pitcher D.S., Chowdhury R.A., Peters N.S., et al. Ventricular fibrillation mechanism and global fibrillatory organization are determined by gap junction coupling and fibrosis pattern. Cardiovasc. Res. 2021;117:1078–1090. doi: 10.1093/cvr/cvaa141. PubMed DOI PMC

Bao X., Reuss L., Altenberg G.A. Regulation of Purified and Reconstituted Connexin 43 Hemichannels by Protein Kinase C-mediated Phosphorylation of Serine 368. J. Biol. Chem. 2004;279:20058–20066. doi: 10.1074/jbc.M311137200. PubMed DOI

Swope D., Cheng L., Gao E., Li J., Radice G.L. Loss of Cadherin-Binding Proteins β-Catenin and Plakoglobin in the Heart Leads to Gap Junction Remodeling and Arrhythmogenesis. Mol. Cell. Biol. 2012;32:1056–1067. doi: 10.1128/MCB.06188-11. PubMed DOI PMC

Egan Benova T., Viczenczova C., Szeiffova Bacova B., Zurmanova J., Knezl V., Andelova K., Tribulova N. Omacor Protects Normotensive and Hypertensive Rats Exposed to Continuous Light from Increased Risk to Malignant Cardiac Arrhythmias. Mar. Drugs. 2021;19:659. doi: 10.3390/md19120659. PubMed DOI PMC

Grohé C., Kahlert S., Löbbert K., Stimpel M., Karas R.H., Vetter H., Neyses L. Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett. 1997;416:107–112. doi: 10.1016/S0014-5793(97)01179-4. PubMed DOI

Zheng L., Trease A.J., Katsurada K., Spagnol G., Li H., Shi W., Duan B., Patel K.P., Sorgen P.L. Inhibition of Pyk2 and Src activity improves Cx43 gap junction intercellular communication. J. Mol. Cell. Cardiol. 2020;149:27–40. doi: 10.1016/j.yjmcc.2020.09.004. PubMed DOI PMC

Salameh A., Dhein S. Adrenergic control of cardiac gap junction function and expression. Naunyn. Schmiedebergs. Arch. Pharmacol. 2011;383:331–346. doi: 10.1007/s00210-011-0603-4. PubMed DOI

Tribulova N., Kurahara L.H., Hlivak P., Hirano K., Bacova B.S. Pro-arrhythmic signaling of thyroid hormones and its relevance in subclinical hyperthyroidism. Int. J. Mol. Sci. 2020;21:2844. doi: 10.3390/ijms21082844. PubMed DOI PMC

Bačová B.S., Vinczenzová C., Žurmanová J., Kašparová D., Knezl V., Beňová T.E., Pavelka S., Soukup T., Tribulová N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem. Cell Biol. 2017;147:63–73. doi: 10.1007/s00418-016-1488-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...