Blockade of Melatonin Receptors Abolishes Its Antiarrhythmic Effect and Slows Ventricular Conduction in Rat Hearts
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RSF 22-25-00843
Russian Science Foundation
PubMed
37569306
PubMed Central
PMC10419066
DOI
10.3390/ijms241511931
PII: ijms241511931
Knihovny.cz E-zdroje
- Klíčová slova
- conduction velocity, connexin-43, melatonin, post-ischemic arrhythmias, potassium current, rat heart, sodium current,
- MeSH
- antiarytmika farmakologie terapeutické užití MeSH
- kardiomyocyty metabolismus MeSH
- konexin 43 * metabolismus MeSH
- krysa rodu Rattus MeSH
- melatonin * farmakologie terapeutické užití MeSH
- melatoninové receptory metabolismus MeSH
- srdeční arytmie farmakoterapie prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiarytmika MeSH
- konexin 43 * MeSH
- luzindole MeSH Prohlížeč
- melatonin * MeSH
- melatoninové receptory MeSH
Melatonin has been reported to cause myocardial electrophysiological changes and prevent ventricular tachycardia or fibrillation (VT/VF) in ischemia and reperfusion. We sought to identify electrophysiological targets responsible for the melatonin antiarrhythmic action and to explore whether melatonin receptor-dependent pathways or its antioxidative properties are essential for these effects. Ischemia was induced in anesthetized rats given a placebo, melatonin, and/or luzindole (MT1/MT2 melatonin receptor blocker), and epicardial mapping with reperfusion VT/VFs assessment was performed. The oxidative stress assessment and Western blotting analysis were performed in the explanted hearts. Transmembrane potentials and ionic currents were recorded in cardiomyocytes with melatonin and/or luzindole application. Melatonin reduced reperfusion VT/VF incidence associated with local activation time in logistic regression analysis. Melatonin prevented ischemia-related conduction slowing and did not change the total connexin43 (Cx43) level or oxidative stress markers, but it increased the content of a phosphorylated Cx43 variant (P-Cx43368). Luzindole abolished the melatonin antiarrhythmic effect, slowed conduction, decreased total Cx43, protein kinase Cε and P-Cx43368 levels, and the IK1 current, and caused resting membrane potential (RMP) depolarization. Neither melatonin nor luzindole modified INa current. Thus, the antiarrhythmic effect of melatonin was mediated by the receptor-dependent enhancement of impulse conduction, which was associated with Cx43 phosphorylation and maintaining the RMP level.
Zobrazit více v PubMed
Manchester L.C., Coto-Montes A., Boga J.A., Andersen L.P., Zhou Z., Galano A., Vriend J., Tan D.X., Reiter R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015;59:403–419. doi: 10.1111/jpi.12267. PubMed DOI
Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016;61:253–278. doi: 10.1111/jpi.12360. PubMed DOI
Reiter R.J., Tan D.X., Manchester L.C., Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem. Biophys. 2001;34:237–256. doi: 10.1385/CBB:34:2:237. PubMed DOI
Antolin I., Rodriguez C., Sainz R.M., Mayo J.C., Uria H., Kotler M.L., Rodriguez-Colunga M.J., Tolivia D., Menendez-Pelaez A. Neurohormone melatonin prevents cell damage: Effect on gene expression for antioxidant enzymes. Faseb J. 1996;10:882–890. doi: 10.1096/fasebj.10.8.8666165. PubMed DOI
Rodriguez C., Mayo J.C., Sainz R.M., Antolin I., Herrera F., Martin V., Reiter R.J. Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res. 2004;36:1–9. doi: 10.1046/j.1600-079X.2003.00092.x. PubMed DOI
Pablos M.I., Reiter R.J., Ortiz G.G., Guerrero J.M., Agapito M.T., Chuang J.I., Sewerynek E. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem. Int. 1998;32:69–75. doi: 10.1016/S0197-0186(97)00043-0. PubMed DOI
Liu L., Labani N., Cecon E., Jockers R. Melatonin target proteins: Too many or not enough? Front. Endocrinol. 2019;10:791. doi: 10.3389/fendo.2019.00791. PubMed DOI PMC
Stauch B., Johansson L.C., Cherezov V. Structural insights into melatonin receptors. FEBS J. 2020;287:1496–1510. doi: 10.1111/febs.15128. PubMed DOI PMC
Nikolaev G., Robeva R., Konakchieva R. Membrane melatonin receptors activated cell signaling in physiology and disease. Int. J. Mol. Sci. 2021;23:471. doi: 10.3390/ijms23010471. PubMed DOI PMC
Cecon E., Oishi A., Jockers R. Melatonin receptors: Molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 2018;175:3263–3280. doi: 10.1111/bph.13950. PubMed DOI PMC
Tobeiha M., Jafari A., Fadaei S., Mirazimi S.M.A., Dashti F., Amiri A., Khan H., Asemi Z., Reiter R.J., Hamblin M.R., et al. Evidence for the benefits of melatonin in cardiovascular disease. Front. Cardiovasc. Med. 2022;9:888319. doi: 10.3389/fcvm.2022.888319. PubMed DOI PMC
Hardeland R. Melatonin and retinoid orphan receptors: Demand for new interpretations after their exclusion as nuclear melatonin receptors. Melatonin Res. 2018;1:78–93. doi: 10.32794/mr11250005. DOI
Ma H., Kang J., Fan W., He H., Huang F. Ror: Nuclear receptor for melatonin or not? Molecules. 2021;26:2693. doi: 10.3390/molecules26092693. PubMed DOI PMC
Fang N., Hu C., Sun W., Xu Y., Gu Y., Wu L., Peng Q., Reiter R.J., Liu L. Identification of a novel melatonin-binding nuclear receptor: Vitamin d receptor. J. Pineal Res. 2020;68:e12618. doi: 10.1111/jpi.12618. PubMed DOI
Lochner A., Marais E., Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What’s new? A review. J. Pineal Res. 2018;65:e12490. doi: 10.1111/jpi.12490. PubMed DOI
Argueta J., Solís-Chagoyán H., Estrada-Reyes R., Constantino-Jonapa L.A., Oikawa-Sala J., Velázquez-Moctezuma J., Benítez-King G. Further evidence of the melatonin calmodulin interaction: Effect on camkii activity. Int. J. Mol. Sci. 2022;23:2479. doi: 10.3390/ijms23052479. PubMed DOI PMC
Prado N.J., Egan Beňová T., Diez E.R., Knezl V., Lipták B., Ponce Zumino A.Z., Llamedo-Soria M., Szeiffová Bačová B., Miatello R.M., Tribulová N. Melatonin receptor activation protects against low potassium-induced ventricular fibrillation by preserving action potentials and connexin-43 topology in isolated rat hearts. J. Pineal Res. 2019;67:e12605. doi: 10.1111/jpi.12605. PubMed DOI
Reiter R.J., Tan D.-X., Paredes S.D., Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. Ann. Med. 2010;42:276–285. doi: 10.3109/07853890903485748. PubMed DOI
Paulis L., Simko F. Blood pressure modulation and cardiovascular protection by melatonin: Potential mechanisms behind. Physiol. Res. 2007;56:671–684. doi: 10.33549/physiolres.931236. PubMed DOI
Yang J.-B., Kang Y.-M., Zhang C., Yu X.-J., Chen W.-S. Infusion of melatonin into the paraventricular nucleus ameliorates myocardial ischemia–reperfusion injury by regulating oxidative stress and inflammatory cytokines. J. Cardiovasc. Pharmacol. 2019;74:336–347. doi: 10.1097/FJC.0000000000000711. PubMed DOI PMC
Zhang C., Yang J.-B., Quan W., Feng Y.-D., Feng J.-Y., Cheng L.-S., Li X.-Q., Zhang H.-N., Chen W.-S. Activation of paraventricular melatonin receptor 2 mediates melatonin- conferred cardio-protection against myocardial ischemia/reperfusion injury. J. Cardiovasc. Pharmacol. 2020;76:197–206. doi: 10.1097/FJC.0000000000000851. PubMed DOI
Blatt C.M., Rabinowitz S.H., Lown B. Central serotonergic agents raise the repetitive extrasystole threshold of the vulnerable period of the canine ventricular myocardium. Circ. Res. 1979;44:723–730. doi: 10.1161/01.RES.44.5.723. PubMed DOI
Tan D.X., Manchester L.C., Reiter R.J., Qi W., Kim S.J., El-Sokkary G.H. Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: Prevention by melatonin. J. Pineal Res. 1998;25:184–191. doi: 10.1111/j.1600-079X.1998.tb00558.x. PubMed DOI
Vazan R., Pancza D., Beder I., Styk J. Ischemia-reperfusion injury—antiarrhythmic effect of melatonin associated with reduced recovering of contractility. Gen. Physiol. Biophys. 2005;24:355–359. PubMed
Diez E.R., Prados L.V., Carrion A., Ponce Z.A., Miatello R.M. A novel electrophysiologic effect of melatonin on ischemia/reperfusion-induced arrhythmias in isolated rat hearts. J. Pineal Res. 2009;46:155–160. doi: 10.1111/j.1600-079X.2008.00643.x. PubMed DOI
Jeong E.-M., Liu M., Sturdy M., Gao G., Varghese S.T., Sovari A.A., Dudley S.C. Metabolic stress, reactive oxygen species, and arrhythmia. J. Mol. Cell. Cardiol. 2012;52:454–463. doi: 10.1016/j.yjmcc.2011.09.018. PubMed DOI PMC
Sedova K.A., Bernikova O.G., Cuprova J.I., Ivanova A.D., Kutaeva G.A., Pliss M.G., Lopatina E.V., Vaykshnorayte M.A., Diez E.R., Azarov J.E. Association between antiarrhythmic, electrophysiological, and antioxidative effects of melatonin in ischemia/reperfusion. Int. J. Mol. Sci. 2019;20:6331. doi: 10.3390/ijms20246331. PubMed DOI PMC
Durkina A.V., Bernikova O.G., Gonotkov M.A., Mikhaleva N.J., Sedova K.A., Malykhina I.A., Kuzmin V.S., Velegzhaninov I.O., Azarov J.E. Melatonin treatment improves ventricular conduction via upregulation of nav1.5 channel proteins and sodium current in the normal rat heart. J. Pineal Res. 2022;73:e12798. doi: 10.1111/jpi.12798. PubMed DOI
Szeiffova Bacova B., Viczenczova C., Andelova K., Sykora M., Chaudagar K., Barancik M., Adamcova M., Knezl V., Egan Benova T., Weismann P., et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants. 2020;9:546. doi: 10.3390/antiox9060546. PubMed DOI PMC
Durkina A.V., Bernikova O.G., Mikhaleva N.J., Paderin N.M., Sedova K.A., Gonotkov M.A., Kuzmin V.S., Azarov J.E. Melatonin pretreatment does not modify extrasystolic burden in the rat ischemia-reperfusion model. J. Physiol. Pharmacol. 2021;72:141–148. doi: 10.26402/jpp.2021.1.15. PubMed DOI
Tsvetkova A.S., Bernikova O.G., Mikhaleva N.J., Khramova D.S., Ovechkin A.O., Demidova M.M., Platonov P.G., Azarov J.E. Melatonin prevents early but not delayed ventricular fibrillation in the experimental porcine model of acute ischemia. Int. J. Mol. Sci. 2021;22:328. doi: 10.3390/ijms22010328. PubMed DOI PMC
Bernikova O.G., Tsvetkova A.S., Ovechkin A.O., Demidova M.M., Azarov J.E., Platonov P.G. Ecg markers of acute melatonin treatment in a porcine model of acute myocardial ischemia. Int. J. Mol. Sci. 2022;23:11800. doi: 10.3390/ijms231911800. PubMed DOI PMC
Diez E.R., Renna N.F., Prado N.J., Lembo C., Ponce Zumino A.Z., Vazquez-Prieto M., Miatello R.M. Melatonin, given at the time of reperfusion, prevents ventricular arrhythmias in isolated hearts from fructose-fed rats and spontaneously hypertensive rats. J. Pineal Res. 2013;55:166–173. doi: 10.1111/jpi.12059. PubMed DOI
Sahna E., Parlakpinar H., Turkoz Y., Acet A. Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol. Res. 2005;54:491–495. doi: 10.33549/physiolres.930664. PubMed DOI
Gonzaléz-Candia A., Arias P.V., Aguilar S.A., Figueroa E.G., Reyes R.V., Ebensperger G., Llanos A.J., Herrera E.A. Melatonin reduces oxidative stress in the right ventricle of newborn sheep gestated under chronic hypoxia. Antioxidants. 2021;10:1658. doi: 10.3390/antiox10111658. PubMed DOI PMC
Dubocovich M.L., Delagrange P., Krause D.N., Sugden D., Cardinali D.P., Olcese J. International union of basic and clinical pharmacology. Lxxv. Nomenclature, classification, and pharmacology of g protein-coupled melatonin receptors. Pharmacol. Rev. 2010;62:343–380. doi: 10.1124/pr.110.002832. PubMed DOI PMC
MacKenzie R.S., Melan M.A., Passey D.K., Witt-Enderby P.A. Dual coupling of mt(1) and mt(2) melatonin receptors to cyclic amp and phosphoinositide signal transduction cascades and their regulation following melatonin exposure. Biochem. Pharmacol. 2002;63:587–595. doi: 10.1016/S0006-2952(01)00881-4. PubMed DOI
McArthur A.J., Hunt A.E., Gillette M.U. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: Activation of protein kinase c at dusk and dawn. Endocrinology. 1997;138:627–634. doi: 10.1210/endo.138.2.4925. PubMed DOI
Radio N.M., Doctor J.S., Witt-Enderby P.A. Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via mt2melatonin receptors and the mek/erk (1/2) signaling cascade. J. Pineal Res. 2006;40:332–342. doi: 10.1111/j.1600-079X.2006.00318.x. PubMed DOI
Bao X., Reuss L., Altenberg G.A. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase c-mediated phosphorylation of serine 368. J. Biol. Chem. 2004;279:20058–20066. doi: 10.1074/jbc.M311137200. PubMed DOI
Kohutova J., Elsnicova B., Holzerova K., Neckar J., Sebesta O., Jezkova J., Vecka M., Vebr P., Hornikova D., Szeiffova Bacova B., et al. Anti-arrhythmic cardiac phenotype elicited by chronic intermittent hypoxia is associated with alterations in connexin-43 expression, phosphorylation, and distribution. Front. Endocrinol. 2019;9:789. doi: 10.3389/fendo.2018.00789. PubMed DOI PMC
Belardinelli L., Antzelevitch C., Vos M.A. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol. Sci. 2003;24:619–625. doi: 10.1016/j.tips.2003.10.002. PubMed DOI
Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI
Nelson C.S., Marino J.L., Allen C.N. Melatonin receptors activate heteromeric g-protein coupled kir3 channels. Neuroreport. 1996;7:717–720. doi: 10.1097/00001756-199602290-00009. PubMed DOI
Whorton M.R., Mackinnon R. X-ray structure of the mammalian girk2–βγ g-protein complex. Nature. 2013;498:190–197. doi: 10.1038/nature12241. PubMed DOI PMC
Zhou M.O., Jiao S., Liu Z., Zhang Z.H., Mei Y.A. Luzindole, a melatonin receptor antagonist, inhibits the transient outward k+ current in rat cerebellar granule cells. Brain Res. 2003;970:169–177. doi: 10.1016/S0006-8993(03)02332-1. PubMed DOI
Legros C., Dupré C., Brasseur C., Bonnaud A., Bruno O., Valour D., Shabajee P., Giganti A., Nosjean O., Kenakin T.P., et al. Characterization of the various functional pathways elicited by synthetic agonists or antagonists at the melatonin mt 1 and mt 2 receptors. Pharmacol. Res. Perspect. 2020;8:e00539. doi: 10.1002/prp2.539. PubMed DOI PMC
Koumi S., Backer C.L., Arentzen C.E., Sato R. Beta-adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-adrenergic stimulation in failing human hearts. J. Clin. Investig. 1995;96:2870–2881. doi: 10.1172/JCI118358. PubMed DOI PMC
Jockers R., Delagrange P., Dubocovich M.L., Markus R.P., Renault N., Tosini G., Cecon E., Zlotos D.P. Update on melatonin receptors: Iuphar review 20. Br. J. Pharmacol. 2016;173:2702–2725. doi: 10.1111/bph.13536. PubMed DOI PMC
Johansson L.C., Stauch B., McCorvy J.D., Han G.W., Patel N., Huang X.P., Batyuk A., Gati C., Slocum S.T., Li C., et al. Xfel structures of the human mt(2) melatonin receptor reveal the basis of subtype selectivity. Nature. 2019;569:289–292. doi: 10.1038/s41586-019-1144-0. PubMed DOI PMC
Slominski R.M., Reiter R.J., Schlabritz-Loutsevitch N., Ostrom R.S., Slominski A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell. Endocrinol. 2012;351:152–166. doi: 10.1016/j.mce.2012.01.004. PubMed DOI PMC
Stauch B., Johansson L.C., McCorvy J.D., Patel N., Han G.W., Huang X.P., Gati C., Batyuk A., Slocum S.T., Ishchenko A., et al. Structural basis of ligand recognition at the human mt(1) melatonin receptor. Nature. 2019;569:284–288. doi: 10.1038/s41586-019-1141-3. PubMed DOI PMC
Lin X., Liu N., Lu J., Zhang J., Anumonwo J.M.B., Isom L.L., Fishman G.I., Delmar M. Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. Heart Rhythm. 2011;8:1923–1930. doi: 10.1016/j.hrthm.2011.07.016. PubMed DOI PMC
Bernikova O.G., Sedova K.A., Durkina A.V., Azarov J.E. Managing of ventricular reperfusion tachyarrhythmias-focus on a perfused myocardium. J. Physiol. Pharmacol. 2019;70:757–763. doi: 10.26402/jpp.2019.5.11. PubMed DOI
Bernikova O.G., Durkina A.V., Sedova K.A., Azarov J.E. Determinants of reperfusion arrhythmias: Action potential duration versus dispersion of repolarization. J. Physiol. Pharmacol. 2021;72:691–697. doi: 10.26402/jpp.2021.5.04. PubMed DOI
Govender J., Loos B., Marais E., Engelbrecht A.M. Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: A possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity? Toxicol. Appl. Pharmacol. 2018;358:86–101. doi: 10.1016/j.taap.2018.06.031. PubMed DOI
Andelova K., Szeiffova Bacova B., Sykora M., Pavelka S., Rauchova H., Tribulova N. Cardiac cx43 signaling is enhanced and tgf-β1/smad2/3 suppressed in response to cold acclimation and modulated by thyroid status in hairless shrm. Biomedicines. 2022;10:1707. doi: 10.3390/biomedicines10071707. PubMed DOI PMC
Szeiffová Bačová B., Egan Beňová T., Viczenczová C., Soukup T., Rauchová H., Pavelka S., Knezl V., Barančík M., Tribulová N. Cardiac connexin-43 and pkc signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol. Res. 2016;65:S77–S90. doi: 10.33549/physiolres.933413. PubMed DOI