Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats

. 2020 Jun 22 ; 9 (6) : . [epub] 20200622

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32580481

Grantová podpora
2/0002/20, 2/0158/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
18-0548, 15-0376, 15-0119 Agentúra na Podporu Výskumu a Vývoja
Q 40/5 Programme Progres
26230120009 EU ITMS

Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.

Zobrazit více v PubMed

Dhalla N.S., Adameova A., Kaur M. Role of catecholamine oxidation in sudden cardiac death. Fundam. Clin. Pharmacol. 2010;24:539–546. doi: 10.1111/j.1472-8206.2010.00836.x. PubMed DOI

Costa V.M., Carvalho F., Bastos M.L., Carvalho R.A., Carvalho M., Remiao F. Contribution of Catecholamine Reactive Intermediates and Oxidative Stress to the Pathologic Features of Heart Diseases. Curr. Med. Chem. 2011;18:2272–2314. doi: 10.2174/092986711795656081. PubMed DOI

Tribulova N., Knezl V., Okruhlicova L., Slezak J. Myocardial gap junctions: targets for novel approaches in the prevention of life-threatening cardiac arrhythmias. Physiol. Res. 2008;57:1–13. PubMed

Tribulova N., Knezl V., Szeiffova Bacova B., Egan Benova T., Viczenczova C., Gonçalvesova E., Slezak J. Disordered myocardial Ca2+ homeostasis results in substructural alterations that may promote occurrence of malignant arrhythmias. Physiol. Res. 2016;65:139–148. doi: 10.33549/physiolres.933388. PubMed DOI

Tribulova N., Seki S., Radosinska J., Kaplan P., Babusikova E., Knezl V., Mochizuki S. Myocardial Ca2+ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac death1. Can. J. Physiol. Pharmacol. 2009;87:1120–1129. doi: 10.1139/Y09-106. PubMed DOI

Veliotes D.G.A., Norton G.R., Correia R.J., Strijdom H., Badenhorst D., Brooksbank R., Woodiwiss A.J. Impact of aldosterone receptor blockade on the deleterious cardiac effects of adrenergic activation in hypertensive rats. J. Cardiovasc. Pharmacol. 2010;56:203–211. doi: 10.1097/FJC.0b013e3181e92a01. PubMed DOI

Soltysinska E., Olesen S.P., Osadchii O.E. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation. Exp. Physiol. 2011;96:647–663. doi: 10.1113/expphysiol.2011.058503. PubMed DOI

Liu Y.H., Lu M., Xie Z.Z., Hua F., Xie L., Gao J.H., Koh Y.H., Bian J.S. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. Antioxid. Redox Signal. 2013;20:759–769. doi: 10.1089/ars.2012.4888. PubMed DOI

Krenek P., Kmecova J., Kucerova D., Bajuszova Z., Musil P., Gazova A., Ochodnicky P., Klimas J., Kyselovic J. Isoproterenol-induced heart failure in the rat is associated with nitric oxide-dependent functional alterations of cardiac function. Eur. J. Heart Fail. 2009;11:140–146. doi: 10.1093/eurjhf/hfn026. PubMed DOI PMC

Feng W., Li W. The study of ISO induced heart failure rat model. Exp. Mol. Pathol. 2010;88:299–304. doi: 10.1016/j.yexmp.2009.10.011. PubMed DOI

Mukherjee D., Roy S.G., Bandyopadhyay A., Chattopadhyay A., Basu A., Mitra E., Ghosh A.K., Reiter R.J., Bandyopadhyay D. Melatonin protects against isoproterenol-induced myocardial injury in the rat: Antioxidative mechanisms. J. Pineal Res. 2010;48:251–262. doi: 10.1111/j.1600-079X.2010.00749.x. PubMed DOI

Challa A.A., Vukmirovic M., Blackmon J., Stefanovic B. Withaferin-A reduces type I collagen expression in vitro and inhibits development of myocardial fibrosis in vivo. PLoS ONE. 2012;7:e42989. doi: 10.1371/journal.pone.0042989. PubMed DOI PMC

Herrmann J.E., Heale J., Bieraugel M., Ramos M., Fisher R.L., Vickers A.E.M. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo. Toxicol. Appl. Pharmacol. 2014;274:302–312. doi: 10.1016/j.taap.2013.11.011. PubMed DOI

Gonzalez J., Ramachandran J., Xie L., Contreras J., Fraidenraich D. Selective Connexin43 Inhibition Prevents Isoproterenol-Induced Arrhythmias and Lethality in Muscular Dystrophy Mice. Sci. Rep. 2015;5:1–12. doi: 10.1038/srep13490. PubMed DOI PMC

Wei Y., Meng T., Sun C. Protective effect of diltiazem on myocardial ischemic rats induced by isoproterenol. Mol. Med. Rep. 2018;17:495–501. doi: 10.3892/mmr.2017.7906. PubMed DOI

Yang K.C., Kyle J.W., Makielski J.C., Dudley S.C. Mechanisms of Sudden Cardiac Death: Oxidants and Metabolism. Circ. Res. 2015;116:1937–1955. doi: 10.1161/CIRCRESAHA.116.304691. PubMed DOI PMC

LeBaron T.W., Kura B., Kalocayova B., Tribulova N., Slezak J. A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress. Molecules. 2019;24:2076. doi: 10.3390/molecules24112076. PubMed DOI PMC

Smyth J.W., Hong T.T., Gao D., Vogan J.M., Jensen B.C., Fong T.S., Simpson P.C., Stainier D.Y.R., Chi N.C., Shaw R.M. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J. Clin. Investig. 2010;120:266–279. doi: 10.1172/JCI39740. PubMed DOI PMC

Parthasarathy A., Gopi V., Devi Km S., Balaji N., Vellaichamy E. Aminoguanidine inhibits ventricular fibrosis and remodeling process in isoproterenol-induced hypertrophied rat hearts by suppressing ROS and MMPs. Life Sci. 2014;118:15–26. doi: 10.1016/j.lfs.2014.09.030. PubMed DOI

Packer M. What causes sudden death in patients with chronic heart failure and a reduced ejection fraction? Eur. Heart J. 2020;41:1757–1763. doi: 10.1093/eurheartj/ehz553. PubMed DOI PMC

Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethalarrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI

Benova T., Knezl V., Viczenczova C., Bacova B.S., Radosinska J., Tribulova N. Acute anti-fibrillating and defibrillating potential of atorvastatin, melatonin, eicosapentaenoic acid and docosahexaenoic acid demonstrated in isolated heart model. J. Physiol. Pharmacol. 2015;66:83–89. PubMed

Sedova K.A., Bernikova O.G., Cuprova J.I., Ivanova A.D., Kutaeva G.A., Pliss M.G., Lopatina E.V., Vaykshnorayte M.A., Diez E.R., Azarov J.E. Association between antiarrhythmic, electrophysiological, and antioxidative effects of melatonin in ischemia/reperfusion. Int. J. Mol. Sci. 2019;20:6331. doi: 10.3390/ijms20246331. PubMed DOI PMC

Reiter R.J., Mayo J.C., Tan D.-X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016;61:253–278. doi: 10.1111/jpi.12360. PubMed DOI

Tribulova N., Szeiffova Bacova B., Benova T., Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. PubMed DOI

Bacova B.S., Radosinska J., Wallukat G., Barancik M., Wallukat A., Knezl V., Sykora M., Paulis L., Tribulova N. Suppression of β1-adrenoceptor autoantibodies is involved in the antiarrhythmic effects of omega-3 fatty acids in male and female hypertensive rats. Int. J. Mol. Sci. 2020;21:526. doi: 10.3390/ijms21020526. PubMed DOI PMC

Egan Beňová T., Knezl V., Viczenczová C., Szeiffová Bačová B., Radošinská J., Tribulová N. Anti-fibrillating and defibrillating capability of atorvastatin, melatonin and omega-3 fatty acids demonstrated in acute conditions on isolated heart model. Cardiol. Lett. 2016;25:376–383.

Prado N.J., Egan Beňová T., Diez E.R., Knezl V., Lipták B., Ponce Zumino A.Z., Llamedo-Soria M., Szeiffová Bačová B., Miatello R.M., Tribulová N. Melatonin receptor activation protects against low potassium—Induced ventricular fibrillation by preserving action potentials and connexin-43 topology in isolated rat hearts. J. Pineal Res. 2019;67:e12605. doi: 10.1111/jpi.12605. PubMed DOI

Sykora M., Szeiffova Bacova B., Egan Benova T., Barancik M., Zurmanova J., Rauchova H., Weismann P., Pavelka S., Kurahara L.H., Slezak J., et al. Cardiac Cx43 and ECM Responses to Altered Thyroid Status Are Blunted in Spontaneously Hypertensive versus Normotensive Rats. Int. J. Mol. Sci. 2019;20:3758. doi: 10.3390/ijms20153758. PubMed DOI PMC

Radosinska J., Bacova B., Knezl V., Benova T., Zurmanova J., Soukup T., Arnostova P., Slezak J., Goncalvesova E., Tribulova N. Dietary omega-3 fatty acids attenuate myocardial arrhythmogenic factors and propensity of the heart to lethal arrhythmias in a rodent model of human essential hypertension. J. Hypertens. 2013;31:1876–1885. doi: 10.1097/HJH.0b013e328362215d. PubMed DOI

Bačová B.S., Vinczenzová C., Žurmanová J., Kašparová D., Knezl V., Beňová T.E., Pavelka S., Soukup T., Tribulová N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem. Cell Biol. 2017;147:63–73. doi: 10.1007/s00418-016-1488-6. PubMed DOI

Szeiffová Bačova B., Egan Beňová T., Viczenczová C., Soukup T., Rauchová H., Pavelka S., Knezl V., Barancík M., Tribulová N. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol. Res. 2016;65:77–90. doi: 10.33549/physiolres.933413. PubMed DOI

Barancik M., Bohacova V., Gibalova L., Sedlak J., Sulova Z., Breier A. Potentiation of anticancer drugs: Effects of pentoxifylline on neoplastic cells. Int. J. Mol. Sci. 2012;13:369–382. doi: 10.3390/ijms13010369. PubMed DOI PMC

Sykora M., Kamocsaiova L., Benova T.E., Frimmel K., Ujhazy E., Mach M., Barancik M., Tribulova N., Bacova B.S. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of Wistar rats: A pilot study. Can. J. Physiol. Pharmacol. 2019;97:829–836. doi: 10.1139/cjpp-2018-0740. PubMed DOI

Pelouch V., Dixon I.M.C., Sethi R., Dhalla N.S. Alteration of collagenous protein profile in congestive heart failure secondary to myocardial infarction. Mol. Cell. Biochem. 1993;129:121–131. doi: 10.1007/BF00926360. PubMed DOI

Reddy G.K., Enwemeka C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI

Lojda Z., Gutmann E. Histochemistry of some acid hydrolases in striated muscles of the rat. Histochemistry. 1976;49:337–342. doi: 10.1007/BF00496137. PubMed DOI

Shlafer M., Shepard B.M. A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal. Biochem. 1984;137:269–276. doi: 10.1016/0003-2697(84)90084-8. PubMed DOI

Szobi A., Farkašová-Ledvényiová V., Lichý M., Muráriková M., Čarnická S., Ravingerová T., Adameová A. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J. Cell. Mol. Med. 2018;22:4183–4196. doi: 10.1111/jcmm.13697. PubMed DOI PMC

Aarvik M.D., Sandven I., Dondo T.B., Gale C.P., Ruddox V., Munkhaugen J., Atar D., Otterstad J.E. Effect of oral β-blocker treatment on mortality in contemporary post-myocardial infarction patients: A systematic review and meta-analysis. Eur. Hear. J.-Cardiovasc. Pharmacother. 2019;5:12–20. doi: 10.1093/ehjcvp/pvy034. PubMed DOI PMC

Simko F., Bednarova K.R., Krajcirovicova K., Hrenak J., Celec P., Kamodyova N., Gajdosechova L., Zorad S., Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J. Pineal Res. 2014;57:177–184. doi: 10.1111/jpi.12154. PubMed DOI

Wallner M., Duran J.M., Mohsin S., Troupes C.D., Vanhoutte D., Borghetti G., Vagnozzi R.J., Gross P., Yu D., Trappanese D.M., et al. Acute Catecholamine Exposure Causes Reversible Myocyte Injury without Cardiac Regeneration. Circ. Res. 2016;119:865–879. doi: 10.1161/CIRCRESAHA.116.308687. PubMed DOI PMC

Zhang G.X., Kimura S., Nishiyama A., Shokoji T., Rahman M., Yao L., Nagai Y., Fujisawa Y., Miyatake A., Abe Y. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc. Res. 2005;65:230–238. doi: 10.1016/j.cardiores.2004.08.013. PubMed DOI

Mikaelian I., Coluccio D., Morgan K.T., Johnson T., Ryan A.L., Rasmussen E., Nicklaus R., Kanwal C., Hilton H., Frank K., et al. Temporal gene expression profiling indicates early up-regulation of interleukin-6 in isoproterenol-induced myocardial necrosis in rat. Toxicol. Pathol. 2008;36:256–264. doi: 10.1177/0192623307312696. PubMed DOI

Mukherjee D., Ghosh A.K., Bandyopadhyay A., Basu A., Datta S., Pattari S.K., Reiter R.J., Bandyopadhyay D. Melatonin protects against isoproterenol-induced alterations in cardiac mitochondrial energy-metabolizing enzymes, apoptotic proteins, and assists in complete recovery from myocardial injury in rats. J. Pineal Res. 2012;53:166–179. doi: 10.1111/j.1600-079X.2012.00984.x. PubMed DOI

Sagor M.A.T., Tabassum N., Potol M.A., Alam M.A. Xanthine oxidase inhibitor, allopurinol, prevented oxidative stress, fibrosis, and myocardial damage in isoproterenol induced aged rats. Oxid. Med. Cell. Longev. 2015;2015:478039. doi: 10.1155/2015/478039. PubMed DOI PMC

Sun W., Liu Q., Leng J., Zheng Y., Li J. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases. Life Sci. 2015;121:97–103. doi: 10.1016/j.lfs.2014.11.030. PubMed DOI

Jelinek M., Wallach C., Ehmke H., Schwoerer A.P. Genetic background dominates the susceptibility to ventricular arrhythmias in a murine model of β-adrenergic stimulation. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-20792-5. PubMed DOI PMC

Mikušová A., Kráľová E., Tylková L., Novotová M., Stankovičová T. Myocardial remodelling induced by repeated low doses of isoproterenol. Can. J. Physiol. Pharmacol. 2009;87:641–651. doi: 10.1139/Y09-053. PubMed DOI

Seidel T., Salameh A., Dhein S. A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys. J. 2010;99:2821–2830. doi: 10.1016/j.bpj.2010.09.010. PubMed DOI PMC

Dhein S., Gaertner C., Georgieff C., Salameh A., Schlegel F., Mohr F.W. Effects of isoprenaline on endothelial connexins and angiogenesis in a human endothelial cell culture system. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015;388:101–108. doi: 10.1007/s00210-014-1059-0. PubMed DOI

Salameh A., Dhein S. Pharmacology of Gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? Biochim. Biophys. Acta (BBA)-Biomembr. 2005;1719:36–58. doi: 10.1016/j.bbamem.2005.09.007. PubMed DOI

Feng Y., Cheng J., Wei B., Wang Y. CaMKII inhibition reduces isoproterenol-induced ischemia and arrhythmias in hypertrophic mice. Oncotarget. 2017;8:17504. doi: 10.18632/oncotarget.15099. PubMed DOI PMC

Peters N.S. New insights into myocardial arrhythmogenesis: Distribution of gap-junctional coupling in normal, ischaemic and hypertrophied human hearts. Clin. Sci. 1996;90:447–452. doi: 10.1042/cs0900447. PubMed DOI

Tribulova N., Novakova S., Macsaliova A., Sass S., Thomas S., Goetzfried S., Podzuweit T., Manoach M. Histochemical and ultrastructural characterisation of an arrhythmogenic substrate in ischemic pig heart. Acta Histochem. 2002;104:393–397. doi: 10.1078/0065-1281-00670. PubMed DOI

Lindsey M.L., Escobar G.P., Mukherjee R., Goshorn D.K., Sheats N.J., Bruce J.A., Mains I.M., Hendrick J.K., Hewett K.W., Gourdie R.G., et al. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation. 2006;113:2919–2928. doi: 10.1161/CIRCULATIONAHA.106.612960. PubMed DOI

Fialová M., Dlugošová K., Okruhlicová L., Kristek F., Manoach M., Tribulová N. Adaptation of the heart to hypertension is associated with maladaptive gap junction connexin-43 remodeling. Physiol. Res. 2008;57:7–11. PubMed

Salameh A., Dhein S. Adrenergic control of cardiac gap junction function and expression. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2011;383:331–346. doi: 10.1007/s00210-011-0603-4. PubMed DOI

Saffitz J.E., Kléber A.G. Gap junctions, slow conduction, and ventricular tachycardia after myocardial infarction. J. Am. Coll. Cardiol. 2012;60:1111–1113. doi: 10.1016/j.jacc.2012.05.020. PubMed DOI

Del Rio C.L., Clymer B.D., Billman G.E. Myocardial electrotonic response to submaximal exercise in dogs with healed myocardial infarctions: Evidence for β-adrenoceptor mediated enhanced coupling during exercise testing. Front. Physiol. 2015;6:25. doi: 10.3389/fphys.2015.00025. PubMed DOI PMC

Salameh A., Karl S., Djilali H., Dhein S., Janousek J., Daehnert I. Opposing and synergistic effects of cyclic mechanical stretch and α- or β-adrenergic stimulation on the cardiac gap junction protein Cx43. Pharmacol. Res. 2010;62:506–513. doi: 10.1016/j.phrs.2010.08.002. PubMed DOI

Prabhu S.D., Frangogiannis N.G., Service M., Einstein A. The Biological Basis for Cardiac Repair after Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2017;119:91–112. doi: 10.1161/CIRCRESAHA.116.303577. PubMed DOI PMC

Ocaranza M.P., Díaz-Araya G., Chiong M., Muñoz D., Riveros J.P., Ebensperger R., Sabat S., Irarrázaval P., Jalil J.E., Lavandero S. Isoproterenol and angiotensin I-converting enzyme in lung, left ventricle, and plasma during myocardial hypertrophy and fibrosis. J. Cardiovasc. Pharmacol. 2002;40:246–254. doi: 10.1097/00005344-200208000-00010. PubMed DOI

Ma J., Ma S.Y., Ding C.H. hua Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor β1 and matrix metalloproteinase 9/tissue inhibitor of metalloproteinase 1. Chin. J. Integr. Med. 2017;23:362–369. doi: 10.1007/s11655-015-2159-5. PubMed DOI

Angert D., Berretta R.M., Kubo H., Zhang H., Chen X., Wang W., Ogorek B., Barbe M., Houser S.R. Repair of the injured adult heart involves new myocytes potentially derived from resident cardiac stem cells. Circ. Res. 2011;108:1226–1237. doi: 10.1161/CIRCRESAHA.110.239046. PubMed DOI PMC

Akila P., Vennila L. Chlorogenic acid a dietary polyphenol attenuates isoproterenol induced myocardial oxidative stress in rat myocardium: An in vivo study. Biomed. Pharmacother. 2016;84:208–214. doi: 10.1016/j.biopha.2016.09.028. PubMed DOI

Tribulova N., Szeiffova Bacova B., Egan Benova T., Knezl V., Barancik M., Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9:1191. doi: 10.3390/nu9111191. PubMed DOI PMC

Ferreira A.J., Oliveira T.L., Castro M.C.M., Almeida A.P., Castro C.H., Caliari M.V., Gava E., Kitten G.T., Santos R.A.S. Isoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1-7) analogue AVE 0991. Life Sci. 2007;81:916–923. doi: 10.1016/j.lfs.2007.07.022. PubMed DOI

Martín-Fernández B., de las Heras N., Miana M., Ballesteros S., Valero-Muñoz M., Vassallo D., Davel A.P., Rossoni L.V., Cachofeiro V., Lahera V. Spironolactone prevents alterations associated with cardiac hypertrophy produced by isoproterenol in rats: Involvement of serum- and glucocorticoid-regulated kinase type 1. Exp. Physiol. 2012;97:710–718. doi: 10.1113/expphysiol.2011.063230. PubMed DOI

Folino A., Sprio A.E., Di Scipio F., Berta G.N., Rastaldo R. Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation. Food Funct. 2015;6:2231–2239. doi: 10.1039/C5FO00034C. PubMed DOI

Gourdie R.G., Dimmeler S., Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat. Rev. Drug Discov. 2016;15:620–638. doi: 10.1038/nrd.2016.89. PubMed DOI PMC

Nardo L., Rezzani R., Facchetti L., Favero G., Franco C., Abdelhafez Y.G., Badawi R.D., Guindani M., Seo Y., Pampaloni M. Beneficial Effects of Melatonin on Apolipoprotein-E Knockout Mice by Morphological and 18F-FDG PET/CT Assessments. Int. J. Mol. Sci. 2020;21:2920. doi: 10.3390/ijms21082920. PubMed DOI PMC

Panasiuk O.S., Shysh A.M., Moĭbenko O.O. The influence of dietary omega-3 polyunsaturated fatty acids on functional parameters of myocardial mitochondria during isoproterenol-induced heart injury. Fiziolohichnyi Zhurnal (Kiev Ukraine 1994) 2014;60:18–24. doi: 10.15407/fz60.01.018. PubMed DOI

Mason R.P., Libby P., Bhatt D.L. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler. Thromb. Vasc. Biol. 2020;40:1135–1147. doi: 10.1161/ATVBAHA.119.313286. PubMed DOI PMC

MacDonald I.J., Huang C.-C., Liu S.-C., Tang C.-H. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. Int. J. Mol. Sci. 2020;8:2877. doi: 10.3390/ijms21082877. PubMed DOI PMC

Baum J.R., Dolmatova E., Tan A., Duffy H.S. Omega 3 fatty acid inhibition of inflammatory cytokine-mediated Connexin43 regulation in the heart. Front. Physiol. 2012;3:272. doi: 10.3389/fphys.2012.00272. PubMed DOI PMC

Bačová B., Viczenczová C., Žurmanová J., Kašparová D., Knezl V., Radošinská J., Beňová T., Pavelka S., Soukup T., Tribulová N. Susceptibility of rats with altered thyroid status to malignant arrhythmias is primarily related to myocardial levels of connexin-43 and can be partially ameliorated by supplementation with red palm oil. Exp. Cardiol. 2013;18:41–46.

Prado N.J., Muñoz E.M., Farias Altamirano L.E., Aguiar F., Ponce Zumino A.Z., Sánchez F.J., Miatello R.M., Pueyo E., Diez E.R. Reperfusion Arrhythmias Increase after Superior Cervical Ganglionectomy Due to Conduction Disorders and Changes in Repolarization. Int. J. Mol. Sci. 2020;21:1804. doi: 10.3390/ijms21051804. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effects of renal denervation on the course of cardiorenal syndrome: insight from studies with fawn-hooded hypertensive rats

. 2024 Dec 31 ; 73 (S3) : S737-S754.

Acclimation of Hairless Spontaneously Hypertensive Rat to Ambient Temperature Attenuates Hypertension-Induced Pro-Arrhythmic Downregulation of Cx43 in the Left Heart Ventricle of Males

. 2024 Nov 26 ; 14 (12) : . [epub] 20241126

The treatment with trandolapril and losartan attenuates pressure and volume overload alternations of cardiac connexin-43 and extracellular matrix in Ren-2 transgenic rats

. 2023 Nov 27 ; 13 (1) : 20923. [epub] 20231127

Blockade of Melatonin Receptors Abolishes Its Antiarrhythmic Effect and Slows Ventricular Conduction in Rat Hearts

. 2023 Jul 25 ; 24 (15) : . [epub] 20230725

Distinct Cardiac Connexin-43 Expression in Hypertrophied and Atrophied Myocardium May Impact the Vulnerability of the Heart to Malignant Arrhythmias. A Pilot Study

. 2023 Jun 09 ; 72 (S1) : S37-S45.

Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart

. 2023 Feb 09 ; 24 (4) : . [epub] 20230209

Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM

. 2022 Jul 14 ; 10 (7) : . [epub] 20220714

Omacor Protects Normotensive and Hypertensive Rats Exposed to Continuous Light from Increased Risk to Malignant Cardiac Arrhythmias

. 2021 Nov 24 ; 19 (12) : . [epub] 20211124

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace