Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2/0002/20, 2/0158/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
18-0548, 15-0376, 15-0119
Agentúra na Podporu Výskumu a Vývoja
Q 40/5
Programme Progres
26230120009
EU ITMS
PubMed
32580481
PubMed Central
PMC7346184
DOI
10.3390/antiox9060546
PII: antiox9060546
Knihovny.cz E-zdroje
- Klíčová slova
- connexin-43, extracellular matrix, isoproterenol, melatonin, omega-3 fatty acids, rat heart, ventricular fibrillation,
- Publikační typ
- časopisecké články MeSH
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Centre of Experimental Medicine SAS 84104 Bratislava Slovakia
Department of Physiology Faculty of Medicine Charles University 50003 Hradec Kralove Czech Republic
Faculty of Medicine Comenius University 81499 Bratislava Slovakia
L M College of Pharmacy Ahmedabad Gujarat 380009 India
Research Center for Molecular Medicine of the Austrian Academy of Sciences A 1090 Vienna Austria
Zobrazit více v PubMed
Dhalla N.S., Adameova A., Kaur M. Role of catecholamine oxidation in sudden cardiac death. Fundam. Clin. Pharmacol. 2010;24:539–546. doi: 10.1111/j.1472-8206.2010.00836.x. PubMed DOI
Costa V.M., Carvalho F., Bastos M.L., Carvalho R.A., Carvalho M., Remiao F. Contribution of Catecholamine Reactive Intermediates and Oxidative Stress to the Pathologic Features of Heart Diseases. Curr. Med. Chem. 2011;18:2272–2314. doi: 10.2174/092986711795656081. PubMed DOI
Tribulova N., Knezl V., Okruhlicova L., Slezak J. Myocardial gap junctions: targets for novel approaches in the prevention of life-threatening cardiac arrhythmias. Physiol. Res. 2008;57:1–13. PubMed
Tribulova N., Knezl V., Szeiffova Bacova B., Egan Benova T., Viczenczova C., Gonçalvesova E., Slezak J. Disordered myocardial Ca2+ homeostasis results in substructural alterations that may promote occurrence of malignant arrhythmias. Physiol. Res. 2016;65:139–148. doi: 10.33549/physiolres.933388. PubMed DOI
Tribulova N., Seki S., Radosinska J., Kaplan P., Babusikova E., Knezl V., Mochizuki S. Myocardial Ca2+ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac death1. Can. J. Physiol. Pharmacol. 2009;87:1120–1129. doi: 10.1139/Y09-106. PubMed DOI
Veliotes D.G.A., Norton G.R., Correia R.J., Strijdom H., Badenhorst D., Brooksbank R., Woodiwiss A.J. Impact of aldosterone receptor blockade on the deleterious cardiac effects of adrenergic activation in hypertensive rats. J. Cardiovasc. Pharmacol. 2010;56:203–211. doi: 10.1097/FJC.0b013e3181e92a01. PubMed DOI
Soltysinska E., Olesen S.P., Osadchii O.E. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation. Exp. Physiol. 2011;96:647–663. doi: 10.1113/expphysiol.2011.058503. PubMed DOI
Liu Y.H., Lu M., Xie Z.Z., Hua F., Xie L., Gao J.H., Koh Y.H., Bian J.S. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. Antioxid. Redox Signal. 2013;20:759–769. doi: 10.1089/ars.2012.4888. PubMed DOI
Krenek P., Kmecova J., Kucerova D., Bajuszova Z., Musil P., Gazova A., Ochodnicky P., Klimas J., Kyselovic J. Isoproterenol-induced heart failure in the rat is associated with nitric oxide-dependent functional alterations of cardiac function. Eur. J. Heart Fail. 2009;11:140–146. doi: 10.1093/eurjhf/hfn026. PubMed DOI PMC
Feng W., Li W. The study of ISO induced heart failure rat model. Exp. Mol. Pathol. 2010;88:299–304. doi: 10.1016/j.yexmp.2009.10.011. PubMed DOI
Mukherjee D., Roy S.G., Bandyopadhyay A., Chattopadhyay A., Basu A., Mitra E., Ghosh A.K., Reiter R.J., Bandyopadhyay D. Melatonin protects against isoproterenol-induced myocardial injury in the rat: Antioxidative mechanisms. J. Pineal Res. 2010;48:251–262. doi: 10.1111/j.1600-079X.2010.00749.x. PubMed DOI
Challa A.A., Vukmirovic M., Blackmon J., Stefanovic B. Withaferin-A reduces type I collagen expression in vitro and inhibits development of myocardial fibrosis in vivo. PLoS ONE. 2012;7:e42989. doi: 10.1371/journal.pone.0042989. PubMed DOI PMC
Herrmann J.E., Heale J., Bieraugel M., Ramos M., Fisher R.L., Vickers A.E.M. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo. Toxicol. Appl. Pharmacol. 2014;274:302–312. doi: 10.1016/j.taap.2013.11.011. PubMed DOI
Gonzalez J., Ramachandran J., Xie L., Contreras J., Fraidenraich D. Selective Connexin43 Inhibition Prevents Isoproterenol-Induced Arrhythmias and Lethality in Muscular Dystrophy Mice. Sci. Rep. 2015;5:1–12. doi: 10.1038/srep13490. PubMed DOI PMC
Wei Y., Meng T., Sun C. Protective effect of diltiazem on myocardial ischemic rats induced by isoproterenol. Mol. Med. Rep. 2018;17:495–501. doi: 10.3892/mmr.2017.7906. PubMed DOI
Yang K.C., Kyle J.W., Makielski J.C., Dudley S.C. Mechanisms of Sudden Cardiac Death: Oxidants and Metabolism. Circ. Res. 2015;116:1937–1955. doi: 10.1161/CIRCRESAHA.116.304691. PubMed DOI PMC
LeBaron T.W., Kura B., Kalocayova B., Tribulova N., Slezak J. A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress. Molecules. 2019;24:2076. doi: 10.3390/molecules24112076. PubMed DOI PMC
Smyth J.W., Hong T.T., Gao D., Vogan J.M., Jensen B.C., Fong T.S., Simpson P.C., Stainier D.Y.R., Chi N.C., Shaw R.M. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J. Clin. Investig. 2010;120:266–279. doi: 10.1172/JCI39740. PubMed DOI PMC
Parthasarathy A., Gopi V., Devi Km S., Balaji N., Vellaichamy E. Aminoguanidine inhibits ventricular fibrosis and remodeling process in isoproterenol-induced hypertrophied rat hearts by suppressing ROS and MMPs. Life Sci. 2014;118:15–26. doi: 10.1016/j.lfs.2014.09.030. PubMed DOI
Packer M. What causes sudden death in patients with chronic heart failure and a reduced ejection fraction? Eur. Heart J. 2020;41:1757–1763. doi: 10.1093/eurheartj/ehz553. PubMed DOI PMC
Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethalarrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI
Benova T., Knezl V., Viczenczova C., Bacova B.S., Radosinska J., Tribulova N. Acute anti-fibrillating and defibrillating potential of atorvastatin, melatonin, eicosapentaenoic acid and docosahexaenoic acid demonstrated in isolated heart model. J. Physiol. Pharmacol. 2015;66:83–89. PubMed
Sedova K.A., Bernikova O.G., Cuprova J.I., Ivanova A.D., Kutaeva G.A., Pliss M.G., Lopatina E.V., Vaykshnorayte M.A., Diez E.R., Azarov J.E. Association between antiarrhythmic, electrophysiological, and antioxidative effects of melatonin in ischemia/reperfusion. Int. J. Mol. Sci. 2019;20:6331. doi: 10.3390/ijms20246331. PubMed DOI PMC
Reiter R.J., Mayo J.C., Tan D.-X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016;61:253–278. doi: 10.1111/jpi.12360. PubMed DOI
Tribulova N., Szeiffova Bacova B., Benova T., Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. PubMed DOI
Bacova B.S., Radosinska J., Wallukat G., Barancik M., Wallukat A., Knezl V., Sykora M., Paulis L., Tribulova N. Suppression of β1-adrenoceptor autoantibodies is involved in the antiarrhythmic effects of omega-3 fatty acids in male and female hypertensive rats. Int. J. Mol. Sci. 2020;21:526. doi: 10.3390/ijms21020526. PubMed DOI PMC
Egan Beňová T., Knezl V., Viczenczová C., Szeiffová Bačová B., Radošinská J., Tribulová N. Anti-fibrillating and defibrillating capability of atorvastatin, melatonin and omega-3 fatty acids demonstrated in acute conditions on isolated heart model. Cardiol. Lett. 2016;25:376–383.
Prado N.J., Egan Beňová T., Diez E.R., Knezl V., Lipták B., Ponce Zumino A.Z., Llamedo-Soria M., Szeiffová Bačová B., Miatello R.M., Tribulová N. Melatonin receptor activation protects against low potassium—Induced ventricular fibrillation by preserving action potentials and connexin-43 topology in isolated rat hearts. J. Pineal Res. 2019;67:e12605. doi: 10.1111/jpi.12605. PubMed DOI
Sykora M., Szeiffova Bacova B., Egan Benova T., Barancik M., Zurmanova J., Rauchova H., Weismann P., Pavelka S., Kurahara L.H., Slezak J., et al. Cardiac Cx43 and ECM Responses to Altered Thyroid Status Are Blunted in Spontaneously Hypertensive versus Normotensive Rats. Int. J. Mol. Sci. 2019;20:3758. doi: 10.3390/ijms20153758. PubMed DOI PMC
Radosinska J., Bacova B., Knezl V., Benova T., Zurmanova J., Soukup T., Arnostova P., Slezak J., Goncalvesova E., Tribulova N. Dietary omega-3 fatty acids attenuate myocardial arrhythmogenic factors and propensity of the heart to lethal arrhythmias in a rodent model of human essential hypertension. J. Hypertens. 2013;31:1876–1885. doi: 10.1097/HJH.0b013e328362215d. PubMed DOI
Bačová B.S., Vinczenzová C., Žurmanová J., Kašparová D., Knezl V., Beňová T.E., Pavelka S., Soukup T., Tribulová N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem. Cell Biol. 2017;147:63–73. doi: 10.1007/s00418-016-1488-6. PubMed DOI
Szeiffová Bačova B., Egan Beňová T., Viczenczová C., Soukup T., Rauchová H., Pavelka S., Knezl V., Barancík M., Tribulová N. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol. Res. 2016;65:77–90. doi: 10.33549/physiolres.933413. PubMed DOI
Barancik M., Bohacova V., Gibalova L., Sedlak J., Sulova Z., Breier A. Potentiation of anticancer drugs: Effects of pentoxifylline on neoplastic cells. Int. J. Mol. Sci. 2012;13:369–382. doi: 10.3390/ijms13010369. PubMed DOI PMC
Sykora M., Kamocsaiova L., Benova T.E., Frimmel K., Ujhazy E., Mach M., Barancik M., Tribulova N., Bacova B.S. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of Wistar rats: A pilot study. Can. J. Physiol. Pharmacol. 2019;97:829–836. doi: 10.1139/cjpp-2018-0740. PubMed DOI
Pelouch V., Dixon I.M.C., Sethi R., Dhalla N.S. Alteration of collagenous protein profile in congestive heart failure secondary to myocardial infarction. Mol. Cell. Biochem. 1993;129:121–131. doi: 10.1007/BF00926360. PubMed DOI
Reddy G.K., Enwemeka C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI
Lojda Z., Gutmann E. Histochemistry of some acid hydrolases in striated muscles of the rat. Histochemistry. 1976;49:337–342. doi: 10.1007/BF00496137. PubMed DOI
Shlafer M., Shepard B.M. A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal. Biochem. 1984;137:269–276. doi: 10.1016/0003-2697(84)90084-8. PubMed DOI
Szobi A., Farkašová-Ledvényiová V., Lichý M., Muráriková M., Čarnická S., Ravingerová T., Adameová A. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J. Cell. Mol. Med. 2018;22:4183–4196. doi: 10.1111/jcmm.13697. PubMed DOI PMC
Aarvik M.D., Sandven I., Dondo T.B., Gale C.P., Ruddox V., Munkhaugen J., Atar D., Otterstad J.E. Effect of oral β-blocker treatment on mortality in contemporary post-myocardial infarction patients: A systematic review and meta-analysis. Eur. Hear. J.-Cardiovasc. Pharmacother. 2019;5:12–20. doi: 10.1093/ehjcvp/pvy034. PubMed DOI PMC
Simko F., Bednarova K.R., Krajcirovicova K., Hrenak J., Celec P., Kamodyova N., Gajdosechova L., Zorad S., Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J. Pineal Res. 2014;57:177–184. doi: 10.1111/jpi.12154. PubMed DOI
Wallner M., Duran J.M., Mohsin S., Troupes C.D., Vanhoutte D., Borghetti G., Vagnozzi R.J., Gross P., Yu D., Trappanese D.M., et al. Acute Catecholamine Exposure Causes Reversible Myocyte Injury without Cardiac Regeneration. Circ. Res. 2016;119:865–879. doi: 10.1161/CIRCRESAHA.116.308687. PubMed DOI PMC
Zhang G.X., Kimura S., Nishiyama A., Shokoji T., Rahman M., Yao L., Nagai Y., Fujisawa Y., Miyatake A., Abe Y. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc. Res. 2005;65:230–238. doi: 10.1016/j.cardiores.2004.08.013. PubMed DOI
Mikaelian I., Coluccio D., Morgan K.T., Johnson T., Ryan A.L., Rasmussen E., Nicklaus R., Kanwal C., Hilton H., Frank K., et al. Temporal gene expression profiling indicates early up-regulation of interleukin-6 in isoproterenol-induced myocardial necrosis in rat. Toxicol. Pathol. 2008;36:256–264. doi: 10.1177/0192623307312696. PubMed DOI
Mukherjee D., Ghosh A.K., Bandyopadhyay A., Basu A., Datta S., Pattari S.K., Reiter R.J., Bandyopadhyay D. Melatonin protects against isoproterenol-induced alterations in cardiac mitochondrial energy-metabolizing enzymes, apoptotic proteins, and assists in complete recovery from myocardial injury in rats. J. Pineal Res. 2012;53:166–179. doi: 10.1111/j.1600-079X.2012.00984.x. PubMed DOI
Sagor M.A.T., Tabassum N., Potol M.A., Alam M.A. Xanthine oxidase inhibitor, allopurinol, prevented oxidative stress, fibrosis, and myocardial damage in isoproterenol induced aged rats. Oxid. Med. Cell. Longev. 2015;2015:478039. doi: 10.1155/2015/478039. PubMed DOI PMC
Sun W., Liu Q., Leng J., Zheng Y., Li J. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases. Life Sci. 2015;121:97–103. doi: 10.1016/j.lfs.2014.11.030. PubMed DOI
Jelinek M., Wallach C., Ehmke H., Schwoerer A.P. Genetic background dominates the susceptibility to ventricular arrhythmias in a murine model of β-adrenergic stimulation. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-20792-5. PubMed DOI PMC
Mikušová A., Kráľová E., Tylková L., Novotová M., Stankovičová T. Myocardial remodelling induced by repeated low doses of isoproterenol. Can. J. Physiol. Pharmacol. 2009;87:641–651. doi: 10.1139/Y09-053. PubMed DOI
Seidel T., Salameh A., Dhein S. A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys. J. 2010;99:2821–2830. doi: 10.1016/j.bpj.2010.09.010. PubMed DOI PMC
Dhein S., Gaertner C., Georgieff C., Salameh A., Schlegel F., Mohr F.W. Effects of isoprenaline on endothelial connexins and angiogenesis in a human endothelial cell culture system. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015;388:101–108. doi: 10.1007/s00210-014-1059-0. PubMed DOI
Salameh A., Dhein S. Pharmacology of Gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? Biochim. Biophys. Acta (BBA)-Biomembr. 2005;1719:36–58. doi: 10.1016/j.bbamem.2005.09.007. PubMed DOI
Feng Y., Cheng J., Wei B., Wang Y. CaMKII inhibition reduces isoproterenol-induced ischemia and arrhythmias in hypertrophic mice. Oncotarget. 2017;8:17504. doi: 10.18632/oncotarget.15099. PubMed DOI PMC
Peters N.S. New insights into myocardial arrhythmogenesis: Distribution of gap-junctional coupling in normal, ischaemic and hypertrophied human hearts. Clin. Sci. 1996;90:447–452. doi: 10.1042/cs0900447. PubMed DOI
Tribulova N., Novakova S., Macsaliova A., Sass S., Thomas S., Goetzfried S., Podzuweit T., Manoach M. Histochemical and ultrastructural characterisation of an arrhythmogenic substrate in ischemic pig heart. Acta Histochem. 2002;104:393–397. doi: 10.1078/0065-1281-00670. PubMed DOI
Lindsey M.L., Escobar G.P., Mukherjee R., Goshorn D.K., Sheats N.J., Bruce J.A., Mains I.M., Hendrick J.K., Hewett K.W., Gourdie R.G., et al. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation. 2006;113:2919–2928. doi: 10.1161/CIRCULATIONAHA.106.612960. PubMed DOI
Fialová M., Dlugošová K., Okruhlicová L., Kristek F., Manoach M., Tribulová N. Adaptation of the heart to hypertension is associated with maladaptive gap junction connexin-43 remodeling. Physiol. Res. 2008;57:7–11. PubMed
Salameh A., Dhein S. Adrenergic control of cardiac gap junction function and expression. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2011;383:331–346. doi: 10.1007/s00210-011-0603-4. PubMed DOI
Saffitz J.E., Kléber A.G. Gap junctions, slow conduction, and ventricular tachycardia after myocardial infarction. J. Am. Coll. Cardiol. 2012;60:1111–1113. doi: 10.1016/j.jacc.2012.05.020. PubMed DOI
Del Rio C.L., Clymer B.D., Billman G.E. Myocardial electrotonic response to submaximal exercise in dogs with healed myocardial infarctions: Evidence for β-adrenoceptor mediated enhanced coupling during exercise testing. Front. Physiol. 2015;6:25. doi: 10.3389/fphys.2015.00025. PubMed DOI PMC
Salameh A., Karl S., Djilali H., Dhein S., Janousek J., Daehnert I. Opposing and synergistic effects of cyclic mechanical stretch and α- or β-adrenergic stimulation on the cardiac gap junction protein Cx43. Pharmacol. Res. 2010;62:506–513. doi: 10.1016/j.phrs.2010.08.002. PubMed DOI
Prabhu S.D., Frangogiannis N.G., Service M., Einstein A. The Biological Basis for Cardiac Repair after Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2017;119:91–112. doi: 10.1161/CIRCRESAHA.116.303577. PubMed DOI PMC
Ocaranza M.P., Díaz-Araya G., Chiong M., Muñoz D., Riveros J.P., Ebensperger R., Sabat S., Irarrázaval P., Jalil J.E., Lavandero S. Isoproterenol and angiotensin I-converting enzyme in lung, left ventricle, and plasma during myocardial hypertrophy and fibrosis. J. Cardiovasc. Pharmacol. 2002;40:246–254. doi: 10.1097/00005344-200208000-00010. PubMed DOI
Ma J., Ma S.Y., Ding C.H. hua Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor β1 and matrix metalloproteinase 9/tissue inhibitor of metalloproteinase 1. Chin. J. Integr. Med. 2017;23:362–369. doi: 10.1007/s11655-015-2159-5. PubMed DOI
Angert D., Berretta R.M., Kubo H., Zhang H., Chen X., Wang W., Ogorek B., Barbe M., Houser S.R. Repair of the injured adult heart involves new myocytes potentially derived from resident cardiac stem cells. Circ. Res. 2011;108:1226–1237. doi: 10.1161/CIRCRESAHA.110.239046. PubMed DOI PMC
Akila P., Vennila L. Chlorogenic acid a dietary polyphenol attenuates isoproterenol induced myocardial oxidative stress in rat myocardium: An in vivo study. Biomed. Pharmacother. 2016;84:208–214. doi: 10.1016/j.biopha.2016.09.028. PubMed DOI
Tribulova N., Szeiffova Bacova B., Egan Benova T., Knezl V., Barancik M., Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9:1191. doi: 10.3390/nu9111191. PubMed DOI PMC
Ferreira A.J., Oliveira T.L., Castro M.C.M., Almeida A.P., Castro C.H., Caliari M.V., Gava E., Kitten G.T., Santos R.A.S. Isoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1-7) analogue AVE 0991. Life Sci. 2007;81:916–923. doi: 10.1016/j.lfs.2007.07.022. PubMed DOI
Martín-Fernández B., de las Heras N., Miana M., Ballesteros S., Valero-Muñoz M., Vassallo D., Davel A.P., Rossoni L.V., Cachofeiro V., Lahera V. Spironolactone prevents alterations associated with cardiac hypertrophy produced by isoproterenol in rats: Involvement of serum- and glucocorticoid-regulated kinase type 1. Exp. Physiol. 2012;97:710–718. doi: 10.1113/expphysiol.2011.063230. PubMed DOI
Folino A., Sprio A.E., Di Scipio F., Berta G.N., Rastaldo R. Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation. Food Funct. 2015;6:2231–2239. doi: 10.1039/C5FO00034C. PubMed DOI
Gourdie R.G., Dimmeler S., Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat. Rev. Drug Discov. 2016;15:620–638. doi: 10.1038/nrd.2016.89. PubMed DOI PMC
Nardo L., Rezzani R., Facchetti L., Favero G., Franco C., Abdelhafez Y.G., Badawi R.D., Guindani M., Seo Y., Pampaloni M. Beneficial Effects of Melatonin on Apolipoprotein-E Knockout Mice by Morphological and 18F-FDG PET/CT Assessments. Int. J. Mol. Sci. 2020;21:2920. doi: 10.3390/ijms21082920. PubMed DOI PMC
Panasiuk O.S., Shysh A.M., Moĭbenko O.O. The influence of dietary omega-3 polyunsaturated fatty acids on functional parameters of myocardial mitochondria during isoproterenol-induced heart injury. Fiziolohichnyi Zhurnal (Kiev Ukraine 1994) 2014;60:18–24. doi: 10.15407/fz60.01.018. PubMed DOI
Mason R.P., Libby P., Bhatt D.L. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler. Thromb. Vasc. Biol. 2020;40:1135–1147. doi: 10.1161/ATVBAHA.119.313286. PubMed DOI PMC
MacDonald I.J., Huang C.-C., Liu S.-C., Tang C.-H. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. Int. J. Mol. Sci. 2020;8:2877. doi: 10.3390/ijms21082877. PubMed DOI PMC
Baum J.R., Dolmatova E., Tan A., Duffy H.S. Omega 3 fatty acid inhibition of inflammatory cytokine-mediated Connexin43 regulation in the heart. Front. Physiol. 2012;3:272. doi: 10.3389/fphys.2012.00272. PubMed DOI PMC
Bačová B., Viczenczová C., Žurmanová J., Kašparová D., Knezl V., Radošinská J., Beňová T., Pavelka S., Soukup T., Tribulová N. Susceptibility of rats with altered thyroid status to malignant arrhythmias is primarily related to myocardial levels of connexin-43 and can be partially ameliorated by supplementation with red palm oil. Exp. Cardiol. 2013;18:41–46.
Prado N.J., Muñoz E.M., Farias Altamirano L.E., Aguiar F., Ponce Zumino A.Z., Sánchez F.J., Miatello R.M., Pueyo E., Diez E.R. Reperfusion Arrhythmias Increase after Superior Cervical Ganglionectomy Due to Conduction Disorders and Changes in Repolarization. Int. J. Mol. Sci. 2020;21:1804. doi: 10.3390/ijms21051804. PubMed DOI PMC
Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart