Distinct Cardiac Connexin-43 Expression in Hypertrophied and Atrophied Myocardium May Impact the Vulnerability of the Heart to Malignant Arrhythmias. A Pilot Study

. 2023 Jun 09 ; 72 (S1) : S37-S45.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37294117

Our and other studies suggest that myocardial hypertrophy in response to hypertension and hyperthyroidism increases propensity of the heart to malignant arrhythmias, while these are rare in conditions of hypothyroidism or type-1 diabetes mellitus associated with myocardial atrophy. One of the crucial factors impacting the susceptibility of the heart to life-threatening arrhythmias is gap junction channel protein connexin-43 (Cx43), which ensure cell-to-cell coupling for electrical signal propagation. Therefore, we aimed to explore Cx43 protein abundance and its topology in hypertrophic and hypotrophic cardiac phenotype. Analysis were performed in left ventricular tissue of adult male spontaneously hypertensive rat (SHR), Wistar Kyoto rats treated for 8-weeks with L-thyroxine, methimazol or strepotozotocin to induce hyperthyroid, hypothyroid and type-1 diabetic status as well as non-treated animals. Results showed that comparing to healthy rats there was a decrease of total myocardial Cx43 and its variant phosphorylated at serine368 in SHR and hyperthyroid rats. Besides, enhanced localization of Cx43 was demonstrated on lateral sides of hypertrophied cardiomyocytes. In contrast, total Cx43 protein and its serine368 variant were increased in atrophied left ventricle of hypothyroid and type-1 diabetic rats. It was associated with less pronounced alterations in Cx43 topology. In parallel, the abundance of PKCepsilon, which phosphorylates Cx43 at serine368 that stabilize Cx43 function and distribution was reduced in hypertrophied heart while enhanced in atrophied once. Findings suggest that differences in the abundance of cardiac Cx43, its variant phosphorylated at serine368 and Cx43 topology may explain, in part, distinct propensity of hypertrophied and atrophied heart to malignant arrhythmias.

Zobrazit více v PubMed

Campbell SE, Korecky B, Rakusan K. Remodeling of myocyte dimensions in hypertrophic and atrophic rat hearts. Circ Res. 1991;68:984–996. doi: 10.1161/01.RES.68.4.984. PubMed DOI

Anversa P, Ricci R, Olivetti G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J Am Coll Cardiol. 1986;7:1140–1149. doi: 10.1016/S0735-1097(86)80236-4. PubMed DOI

Heckle MR, Flatt DM, Sun Y, Mancarella S, Marion TN, Gerling IC, Weber KT. Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function. Heart Fail Rev. 2016;21:191–198. doi: 10.1007/s10741-016-9535-x. PubMed DOI

Thompson EW, Marino TA, Uboh CE, Kent RL, Cooper G., IV Atrophy reversal and cardiocyte redifferentiation in reloaded cat myocardium. Circ Res. 1984;54:367–377. doi: 10.1161/01.RES.54.4.367. PubMed DOI

Montalvo D, Pérez-Treviño P, Madrazo-Aguirre K, González-Mondellini FA, Miranda-Roblero HO, Ramonfaur-Gracia D, Jacobo-Antonio M, et al. Underlying mechanism of the contractile dysfunction in atrophied ventricular myocytes from a murine model of hypothyroidism. Cell Calcium. 2018;72:26–38. doi: 10.1016/j.ceca.2018.01.005. PubMed DOI

Weber KT. Depressed myocardial contractility: can it be rescued? Am J Med Sci. 2016;352:428–432. doi: 10.1016/j.amjms.2016.05.026. PubMed DOI

Egan Benova T, Szeiffova Bacova B, Viczenczova C, Diez E, Barancik M, Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol Res. 2016;65(Suppl 1):S29–S42. doi: 10.33549/physiolres.933391. PubMed DOI

Bacharova L. Missing link between molecular aspects of ventricular arrhythmias and QRS complex morphology in left ventricular hypertrophy. Int J Mol Sci. 2020;21:48. doi: 10.3390/ijms21010048. PubMed DOI PMC

Tribulova N, Knezl V, Shainberg A, Seki S, Soukup T. Thyroid hormones and cardiac arrhythmias. Vascul Pharmacol. 2010;52:102–12. doi: 10.1016/j.vph.2009.10.001. PubMed DOI

Lin H, Mitasikova M, Dlugosova K, Okruhlicova L, Imanaga I, Ogawa K, Weismann P, Tribulova N. Thyroid hormones suppress ε-pkc signalling, down-regulate connexin-43 and increase lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts. Physiol Pharmacol. 2008;59:271–285. PubMed

Szeiffová Bačová B, Vinczenzová C, Žurmanová J, Kašparová D, Knezl V, Beňová TE, Pavelka S, Soukup T, Tribulová N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem Cell Biol. 2017;147:63–73. doi: 10.1007/s00418-016-1488-6. PubMed DOI

Bernjak A, Novodvorsky P, Chow E, Iqbal A, Sellors L, Williams S, Fawdry RA, et al. Cardiac arrhythmias and electrophysiologic responses during spontaneous hyperglycaemia in adults with type 1 diabetes mellitus. Diabetes Metab. 2021;47:101237. doi: 10.1016/j.diabet.2021.101237. PubMed DOI

Salameh A, Dhein S. Pharmacology of Gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? Biochim Biophys Acta. 2005;1719:36–58. doi: 10.1016/j.bbamem.2005.09.007. PubMed DOI

Andelova K, Benova TE, Bacova BS, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac connexin-43 hemichannels and pannexin1 channels: Provocative antiarrhythmic targets. Int J Mol Sci. 2021;22:1–2. doi: 10.3390/ijms22010260. PubMed DOI PMC

Dhillon PS, Gray R, Kojodjojo P, Jabr R, Chowdhury R, Fry CH, Peters NS. Relationship between gap-junctional conductance and conduction velocity in mammalian myocardium. Circ Arrhythmia Electrophysiol. 2013;6:1208–1214. doi: 10.1161/CIRCEP.113.000848. PubMed DOI

Dhein S, Salameh A. Remodeling of cardiac gap junctional cell-cell coupling. Cells. 2021;10:2422. doi: 10.3390/cells10092422. PubMed DOI PMC

Peters NS. New insights into myocardial arrhythmogenesis: Distribution of gap-junctional coupling in normal, ischaemic and hypertrophied human hearts. Clin Sci. 1996;90:447–452. doi: 10.1042/cs0900447. PubMed DOI

Thomas D, Christ T, Fabritz L, Goette A, Hammwöhner M, Heijman J, Kockskämper J, et al. German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: impact of molecular mechanisms on clinical arrhythmia management. Clin Res Cardiol. 2019;108:577–599. doi: 10.1007/s00392-018-1377-1. PubMed DOI

Bao X, Reuss L, Altenberg GA. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C-mediated phosphorylation of serine 368. J Biol Chem. 2004;279:20058–0066. doi: 10.1074/jbc.M311137200. PubMed DOI

Benova T, Viczenczova C, Radosinska J, Bacova B, Knezl V, Dosenko V, Weismann P, et al. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can J Physiol Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI

Bacova BS, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants. 2020;9:1–19. doi: 10.3390/antiox9060546. PubMed DOI PMC

Sykora M, Bacova BS, Benova TE, Barancik M, Zurmanova J, Rauchova H, Weismann P, et al. Cardiac Cx43 and ECM responses to altered thyroid status are blunted in spontaneously hypertensive versus normotensive rats. Int J Mol Sci. 2019;20:3758. doi: 10.3390/ijms20153758. PubMed DOI PMC

Gutstein DE, Morley GE, Vaidya D, Liu F, Chen FL, Stuhlmann H, Fishman GI. Heterogeneous expression of gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation. 2001;104:1194–1199. doi: 10.1161/hc3601.093990. PubMed DOI

Tribulova N, Szeiffova Bacova B, Benova T, Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. PubMed DOI

Szeiffová Bačova B, Egan Beňová T, Viczenczová C, Soukup T, Raučhová H, Pavelka S, Knezl V, Barancík M, Tribulová N. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol Res. 2016;65(Suppl 1):S77–S90. doi: 10.33549/physiolres.933413. PubMed DOI

Seidel T, Salameh A, Dhein S. A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys J. 2010;99:2821–830. doi: 10.1016/j.bpj.2010.09.010. PubMed DOI PMC

Duffy HS. The molecular mechanisms of gap junction remodeling. Hear Rhythm. 2012;9:1331–1334. doi: 10.1016/j.hrthm.2011.11.048. PubMed DOI PMC

Kamalov G, Zhao W, Zhao T, Sun Y, Ahokas RA, Marion TN, Al Darazi F, et al. Atrophic cardiomyocyte signaling in hypertensive heart disease. J Cardiovasc Pharmacol. 2013;62:497–506. doi: 10.1097/FJC.0000000000000011. PubMed DOI PMC

Roell W, Klein AM, Breitbach M, Becker TS, Parikh A, Lee J, Zimmermann K, et al. Overexpression of Cx43 in cells of the myocardial scar: Correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Sci Rep. 2018;8:1–14. doi: 10.1038/s41598-018-25147-8. PubMed DOI PMC

Szeiffova Bacova B, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does myocardial atrophy represent anti-arrhythmic phenotype? Biomedicines. 2022;10:2819. doi: 10.3390/biomedicines10112819. PubMed DOI PMC

Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation. 1994;90:713–725. doi: 10.1161/01.CIR.90.2.713. PubMed DOI

Ravingerova T, Stetka R, Barancik M, Volkovova K, Pancza D, Ziegelhöffer A, Styk J. Response to ischemia and endogenous myocardial protection in the diabetic heart. Adv Exp Med Biol. 2001;498:285–93. doi: 10.1007/978-1-4615-1321-6_36. PubMed DOI

Hegyi B, Ko CY, Bossuyt J, Bers DM. Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycaemia: Reduced repolarization reserve, neurohormonal stimulation, and heart failure exacerbate susceptibility. Cardiovasc Res. 2021;117:2781–793. doi: 10.1093/cvr/cvab006. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...