Cardiac Cx43 and ECM Responses to Altered Thyroid Status Are Blunted in Spontaneously Hypertensive versus Normotensive Rats

. 2019 Aug 01 ; 20 (15) : . [epub] 20190801

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31374823

Grantová podpora
15-0119, 15-0376 Agentúra na Podporu Výskumu a Vývoja
2/0076/16, 2/0160/18, 2/0063/18, 2/0158/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
26230120009 undefined <span style="color:gray;font-size:10px;">undefined</span>

Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor β1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.

Zobrazit více v PubMed

Dillmann W.H. Cellular action of thyroid hormone on the heart. Thyroid. 2002;12:447–452. doi: 10.1089/105072502760143809. PubMed DOI

Tribulova N., Knezl V., Shainberg A., Seki S., Soukup T. Thyroid hormones and cardiac arrhythmias. Vascul. Pharmacol. 2010;52:102–112. doi: 10.1016/j.vph.2009.10.001. PubMed DOI

Soukup T., Smerdu V. Effect of altered innervation and thyroid hormones on myosin heavy chain expression and fiber type transitions: A mini-review. Histochem. Cell Biol. 2014;143:123–130. doi: 10.1007/s00418-014-1276-0. PubMed DOI

Klein I., Danzi S. Thyroid disease and the heart. Curr. Probl. Cardiol. 2016;41:65–92. doi: 10.1016/j.cpcardiol.2015.04.002. PubMed DOI

Razvi S., Jabbar A., Pingitore A., Danzi S., Biondi B., Klein I., Peeters R., Zaman A., Iervasi G. Thyroid hormones and cardiovascular function and diseases. J. Am. Coll. Cardiol. 2018;71:1781–1796. doi: 10.1016/j.jacc.2018.02.045. PubMed DOI

Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail. Rev. 2010;15:125–132. doi: 10.1007/s10741-008-9125-7. PubMed DOI PMC

Rybin V., Steinberg S.F. Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. Circ. Res. 1996;79:388–398. doi: 10.1161/01.RES.79.3.388. PubMed DOI

Zinman T., Shneyvays V., Tribulova N., Manoach M., Shainberg A. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J. Cell. Physiol. 2006;207:220–231. doi: 10.1002/jcp.20562. PubMed DOI

Biondi B., Palmieri E.A., Fazio S., Cosco C., Nocera M., Saccà L., Filetti S., Lombardi G., Perticone F. Endogenous subclinical hyperthyroidism affects quality of life and cardiac morphology and function in young and middle-aged patients. J. Clin. Endocrinol. Metab. 2000;85:4701–4705. PubMed

Pantos C., Mourouzis I. Translating thyroid hormone effects into clinical practice: The relevance of thyroid hormone receptor α1 in cardiac repair. Heart Fail. Rev. 2015;20:273–282. doi: 10.1007/s10741-014-9465-4. PubMed DOI

Knezl V., Soukup T., Okruhlicová L., Slezák J., Tribulová N. Thyroid hormones modulate occurrence and termination of ventricular fibrillation by both long-term and acute actions. Physiol. Res. 2008;57:91–96. PubMed

Ellervik C., Roselli C., Christophersen I.E., Alonso A., Pietzner M., Sitlani C.M., Trompet S., Arking D.E., Geelhoed B., Guo X., et al. Assessment of the relationship between genetic determinants of thyroid function and atrial fibrillation: A mendelian randomization study. JAMA Cardiol. 2019;4:144–152. doi: 10.1001/jamacardio.2018.4635. PubMed DOI PMC

Bačová B., Viczenczová C., Žurmanová J., Kašparová D., Knezl V., Radošinská J., Beňová T., Pavelka S., Soukup T., Tribulová N. Susceptibility of rats with altered thyroid status to malignant arrhythmias is primarily related to myocardial levels of connexin-43 and can be partially ameliorated by supplementation with red palm oil. Exp. Cardiol. 2013;18:41–46.

Szeiffová Bačova B., Egan Beňová T., Viczenczová C., Soukup T., Rauchová H., Pavelka S., Knezl V., Barancík M., Tribulová N. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol. Res. 2016;65:77–90. PubMed

Lin H., Mitasikova M., Dlugosova K., Okruhlicova L., Imanaga I., Ogawa K., Weismann P., Tribulova N. Thyroid hormones suppress ε-PKC signalling, down-regulate connexin-43 and increase lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts. J. Physiol. Pharmacol. 2008;59:271–285. PubMed

Mitašíková M., Lin H., Soukup T., Imanaga I., Tribulová N. Diabetes and thyroid hormones affect connexin-43 and PKC-ε expression in rat heart atria. Physiol. Res. 2009;58:211–217. PubMed

Bačová B.S., Vinczenzová C., Žurmanová J., Kašparová D., Knezl V., Beňová T.E., Pavelka S., Soukup T., Tribulová N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem. Cell Biol. 2017;147:63–73. doi: 10.1007/s00418-016-1488-6. PubMed DOI

Saffitz J.E., Laing J.G., Yamada K.A. Connexin expression and turnover implications for cardiac excitability. Circ. Res. 2000;86:723–728. doi: 10.1161/01.RES.86.7.723. PubMed DOI

Danik S.B., Liu F., Zhang J., Suk H.J., Morley G.E., Fishman G.I., Gutstein D.E. Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ. Res. 2004;95:1035–1041. doi: 10.1161/01.RES.0000148664.33695.2a. PubMed DOI PMC

Yao J., Eghbali M. Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy: Response of cardiac fibroblasts to thyroid hormone in vitro. Circ. Res. 1992;71:831–839. doi: 10.1161/01.RES.71.4.831. PubMed DOI

Ziegelhöffer-Mihalovičová B., Briest W., Baba H.A., Raßler B., Zimmer H.G. The expression of mRNA of cytokines and of extracellular matrix proteins in triiodothyronine-treated rat hearts. Mol. Cell. Biochem. 2003;247:61–68. doi: 10.1023/A:1024153003249. PubMed DOI

Tribulová N., Knezl V., Okruhlicová L., Slezák J. Myocardial gap junctions: Targets for novel approaches in the prevention of life-threatening cardiac arrhythmias. Physiol. Res. 2008;57:1–13. PubMed

Salvarani N., Maguy A., De Simone S.A., Miragoli M., Jousset F., Rohr S. TGF-β1 (transforming growth factor-β1) plays a pivotal role in cardiac myofibroblast arrhythmogenicity. Circ. Arrhythmia Electrophysiol. 2017;10:1–14. doi: 10.1161/CIRCEP.116.004567. PubMed DOI

Lüscher T.F. Dangerous encounters: Triggers of fatal ventricular arrhythmias and safety of interventional treatment strategies. Eur. Heart, J. 2018;39:3909–3912. doi: 10.1093/eurheartj/ehy754. PubMed DOI

Severs N.J., Bruce A.F., Dupont E., Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 2008;80:9–19. doi: 10.1093/cvr/cvn133. PubMed DOI PMC

Benova T., Knezl V., Viczenczova C., Bacova B.S., Radosinska J., Tribulova N. Acute anti-fibrillating and defibrillating potential of atorvastatin, melatonin, eicosapentaenoic acid and docosahexaenoic acid demonstrated in isolated heart model. J. Physiol. Pharmacol. 2015;66 PubMed

Radosinska J., Bacova B., Knezl V., Benova T., Zurmanova J., Soukup T., Arnostova P., Slezak J., Goncalvesova E., Tribulova N. Dietary omega-3 fatty acids attenuate myocardial arrhythmogenic factors and propensity of the heart to lethal arrhythmias in a rodent model of human essential hypertension. J. Hypertens. 2013;31:1876–1885. doi: 10.1097/HJH.0b013e328362215d. PubMed DOI

Tribulova N., Bacova B.S., Benova T.E., Knezl V., Barancik M., Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9 doi: 10.3390/nu9111191. PubMed DOI PMC

Bruhn T.O., Jackson I.M.D. Abnormalities of the thyroid hormone negative feedback regulation of TSH secretion in spontaneously hypertensive rats. Regul. Pept. 1992;38:221–230. doi: 10.1016/0167-0115(92)90104-3. PubMed DOI

Wang B., Ouyang J., Xia Z. Effects of triiodo-thyronine on angiotensin-induced cardiomyocyte hypertrophy: Reversal of increased β-myosin heavy chain gene expression. Can. J. Physiol. Pharmacol. 2006;84:935–941. doi: 10.1139/y06-043. PubMed DOI

Nattel S., Maguy A., Le Bouter S., Yeh Y.-H. Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiol. Rev. 2007;87:425–456. doi: 10.1152/physrev.00014.2006. PubMed DOI

Kurebayashi N., Nishizawa H., Nakazato Y., Kurihara H., Matsushita S., Daida H., Ogawa Y. Aberrant cell-to-cell coupling in Ca 2+ -overloaded guinea pig ventricular muscles. Am. J. Physiol. Physiol. 2008;294:C1419–C1429. doi: 10.1152/ajpcell.00413.2007. PubMed DOI

Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethalarrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI

Bao X., Reuss L., Altenberg G.A. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C-mediated phosphorylation of serine 368. J. Biol. Chem. 2004;279:20058–20066. doi: 10.1074/jbc.M311137200. PubMed DOI

Egan Benova T., Szeiffova Bacova B., Viczenczova C., Diez E., Barancik M., Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol. Res. 2016;65:29–42. PubMed

Palatinus J.A., Rhett J.M., Gourdie R.G. Enhanced PKCε mediated phosphorylation of connexin43 at serine 368 by a carboxyl-terminal mimetic peptide is dependent on injury. Channels. 2011;5:236–240. doi: 10.4161/chan.5.3.15834. PubMed DOI PMC

Kohutova J., Elsnicova B., Holzerova K., Neckar J., Sebesta O., Jezkova J., Vecka M., Vebr P., Hornikova D., Szeiffova Bacova B., et al. Anti-arrhythmic cardiac phenotype elicited by chronic intermittent hypoxia is associated with alterations in connexin-43 expression, phosphorylation, and distribution. Front. Endocrinol. (Lausanne). 2019;9:1–10. doi: 10.3389/fendo.2018.00789. PubMed DOI PMC

Tribulova N., Szeiffova Bacova B., Benova T., Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. PubMed DOI

Solan J.L., Lampe P.D. Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim Biophys Acta Biomembr. 2018;1860:83–90. doi: 10.1016/j.bbamem.2017.04.008. PubMed DOI PMC

Peters N.S., Coromilas J., Severs N.J., Wit A.L. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997;95:988–996. doi: 10.1161/01.CIR.95.4.988. PubMed DOI

Duffy H. The molecular mechanisms of gap junction remodeling. Hear. Rhythm. 2012;9:1331–1334. doi: 10.1016/j.hrthm.2011.11.048. PubMed DOI PMC

Severs N.J. Gap junction remodeling and cardiac arrhythmogenesis: Cause or coincidence? J. Cell. Mol. Med. 2001;5:355–366. doi: 10.1111/j.1582-4934.2001.tb00170.x. PubMed DOI PMC

Hajje G., Saliba Y., Itani T., Moubarak M., Aftimos G., Farès N. Hypothyroidism and its rapid correction alter cardiac remodeling. PLoS ONE. 2014;9:1–13. doi: 10.1371/journal.pone.0109753. PubMed DOI PMC

Chen W.-J., Lin K.-H., Lee Y.-S. Molecular characterization of myocardial fibrosis during hypothyroidism: Evidence for negative regulation of the pro-α1(I) collagen gene expression by thyroid hormone receptor. Mol. Cell. Endocrinol. 2000;162:45–55. doi: 10.1016/S0303-7207(00)00203-3. PubMed DOI

Karim M.A., Ferguson A.G., Wakim B.T., Samarel A.M. In vivo collagen turnover during development of thyroxine-induced left ventricular hypertrophy. Am. J. Physiol. Physiol. 1991;260:C316–C326. doi: 10.1152/ajpcell.1991.260.2.C316. PubMed DOI

Ghose Roy S., Mishra S., Ghosh G., Bandyopadhyay A. Thyroid hormone induces myocardial matrix degradation by activating matrix metalloproteinase-1. Matrix Biol. 2007;26:269–279. doi: 10.1016/j.matbio.2006.12.005. PubMed DOI

Boulaksil M., Winckels S.K.G., Engelen M.A., Stein M., Van Veen T.A.B., Jansen J.A., Linnenbank A.C., Bierhuizen M.F.A., Groenewegen W.A., Van Oosterhout M.F.M., et al. Heterogeneous connexin43 distribution in heart failure is associated with dispersed conduction and enhanced susceptibility to ventricular arrhythmias. Eur. J. Heart Fail. 2010;12:913–921. doi: 10.1093/eurjhf/hfq092. PubMed DOI

Kurtz TW M.R.J. Biological variability in Wistar-Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension. 1987;10:127–131. doi: 10.1161/01.HYP.10.1.127. PubMed DOI

Zhang-james Y., Middleton F.A., Faraone S. V Genetic architecture of Wistar-Kyoto rat and spontaneously hypertensive rat substrains from different sources. Physiol Genomics. 2013;45:528–538. doi: 10.1152/physiolgenomics.00002.2013. PubMed DOI PMC

Rauchová H., Vokurková M., Pavelka S., Behuliak M., Tribulová N., Soukup T. N-3 polyunsaturated fatty acids supplementation does not affect changes of lipid metabolism induced in rats by altered thyroid status. Horm. Metab. Res. 2013;45:507–512. doi: 10.1055/s-0033-1334944. PubMed DOI

Holzerová K., Hlaváčková M., Žurmanová J., Borchert G., Neckář J., Kolář F., Novák F., Nováková O. Involvement of PKCε in cardioprotection induced by adaptation to chronic continuous hypoxia. Physiol. Res. 2015;64:191–201. PubMed

Barancik M., Bohacova V., Gibalova L., Sedlak J., Sulova Z., Breier A. Potentiation of anticancer drugs: Effects of pentoxifylline on neoplastic cells. Int. J. Mol. Sci. 2012;13:369–382. doi: 10.3390/ijms13010369. PubMed DOI PMC

Sykora M., Kamocsaiova L., Benova T.E., Frimmel K., Ujhazy E., Mach M., Barancik M., Tribulova N., Bacova B.S. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of Wistar rats: a pilot study. Can J Physiol Pharmacol. 2019 doi: 10.1139/cjpp-2018-0740. [Epub ahead of print] PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...