The Efficacy of Amifostine against Multiple-Dose Doxorubicin-Induced Toxicity in Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30103540
PubMed Central
PMC6121234
DOI
10.3390/ijms19082370
PII: ijms19082370
Knihovny.cz E-zdroje
- Klíčová slova
- amifostine, bone marrow, doxorubicin, hepatotoxicity, nephrotoxicity, rats,
- MeSH
- amifostin farmakologie MeSH
- doxorubicin škodlivé účinky farmakologie MeSH
- krysa rodu Rattus MeSH
- lékové postižení jater metabolismus patologie prevence a kontrola MeSH
- nemoci ledvin chemicky indukované metabolismus patologie prevence a kontrola MeSH
- orgánová specificita účinky léků MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amifostin MeSH
- doxorubicin MeSH
Amifostine is well known cytoprotector which is efficient when administered before a wide range of antineoplastic agents. The aim of our study was to investigate amifostine effects on doxorubicin-induced toxic changes in rats. Amifostine (75 mg/kg ip) was given 30 min before each dose of doxorubicin (cumulatively 20 mg/kg ip, for 28 days). The animals' whole-body, liver, and kidney weight, serum biochemical examination, as well as microscopic examination of bone marrow, peripheral blood, liver, and kidney, were done on day 56 of the study. Hepatic and renal alterations were carefully quantified by semiquantitative grading scales-hepatic and renal damage score, respectively. In amifostine-pretreated rats, the number of peripheral blood leukocytes was significantly higher in comparison to doxorubicin-only treated group, preferentially protecting neutrophils. In the same group of rats, hepatic and renal alterations associated with polymorphonuclear cell infiltrates were significantly less severe than those observed in animals receiving only doxorubicin. Our results showed that amifostine successfully protected rats against multiple-dose doxorubicin-induced toxicity by complex, and still not fully elucidated mechanisms of action.
Centre for Clinical Pharmacology Military Medical Academy 11 Crnotravska St 11000 Belgrade Serbia
Institute for Pathology Military Medical Academy 11 Crnotravska St 11000 Belgrade Serbia
Zobrazit více v PubMed
Bonadonna G., Valagudda P. Primary Chemotherapy in Operable Breast Cancer. Semin. Oncol. 1998;23:464–474. doi: 10.1200/JCO.1998.16.1.93. PubMed DOI
Dollery C. Cyclophosphamide. In: Dollery C., editor. Therapeutic Drugs. 2nd ed. Churchill Livingstone; Edinburgh, UK: 1999. pp. 349–354. ISBN-10: 0443051488, ISBN-13: 978-0443051487.
Hortobagyi G.N. Anthracyclines in the Treatment of Cancer. An Overview. Drugs. 1997;54:1–7. doi: 10.2165/00003495-199700544-00003. PubMed DOI
Gewitz D.A. A Critical Evaluation of the Mechanisms of Action Proposed for the Antitumor Effects of the Anthracycline Antibiotics Adriamycin and Daunorubicin. Biochem. Pharmacol. 1999;57:727–741. doi: 10.1016/S0006-2952(98)00307-4. PubMed DOI
Minoti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Development in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. doi: 10.1124/pr.56.2.6. PubMed DOI
Mross K. New Anthracycline Derivates: What for? Eur. J. Cancer Clin. Oncol. 1991;27:1542–1544. doi: 10.1016/0277-5379(91)90409-7. PubMed DOI
Sayed-Ahmed M.M., Al-Shabanah O.A., Hafez M.M., Aleisa A.M., Al-Rejaie S.S. Inhibition of Gene Expression of Heart Fatty Acid Binding Protein and Organic Cation/Carnitine Transporter in Doxorubicin Cardiomyopathic Rat Model. Eur. J. Pharmacol. 2010;640:143–149. doi: 10.1016/j.ejphar.2010.05.002. PubMed DOI
Martindale . The Complete Drug Reference [CD-ROM] 36th ed. Pharmaceutical Press; London, UK: 2011. ISBN-13: 978-0853698425, ISBN-10: 0853698422.
Saad Y.S., Najjar A.T., Al-Rikabi A.C. The Preventive Role of Deferoxamine against Acute Doxorubicin Induced Cardiac, Renal and Hepatic Toxicity in Rats. Pharmacol. Res. 2000;43:211–218. doi: 10.1006/phrs.2000.0769. PubMed DOI
Mihailović-Stanojević N., Jovović D., Miloradović Z., Grujić-Milovanović J., Marković-Lipovski J. Reduced Progression of Adriamycin Nephropathy in Spontaneously Hypertensive Rats Treated by Losartan. Nephrol. Dial. Transplant. 2009;24:1142–1150. doi: 10.1093/ndt/gfn596. PubMed DOI
Roomi M.W., Kalinovsky T., Roomi N.W., Rath M., Niedzwiecki A. Prevention of Adriamycin-Induced Hepatic and Renal Toxicity in Male BALB/c Mice by a Nutrient Mixture. Exp. Ther. Med. 2014;7:1040–1044. doi: 10.3892/etm.2014.1535. PubMed DOI PMC
Dragojević-Simić V., Dobrić S., Jaćević V., Bokonjić D., Milosavljević I., Kovačević A., Mikić D. Efficacy of amifostine in protection against doxorubicin-induced acute cardiotoxic effects in rats. Vojnosanit. Pregl. 2013;70:38–45. doi: 10.2298/VSP110905041D. PubMed DOI
Herman E.H., Zhang J., Chadwick D.P., Ferrans V.J. Comparison of the Protective Effects of Amifostine and Dexrazoxane against the Toxicity of Doxorubicin in Spontaneously Hypertensive Rats. Cancer Chemother. Pharmacol. 2000;45:329–334. doi: 10.1007/s002800050048. PubMed DOI
Okunewick J.P., Buffo M.J., Kociban D.L. Comparative Toxicity of Mitoxantrone and Doxorubicin on Hematopoietic Stem Cells. Exp. Hematol. 1985;13:23–30. PubMed
Pugazhendhi A., Jebakumar T.N., Edison I., Velmurugan B.K., Jacob J.A., Karuppusamy I. Toxicity of Doxorubicin (Dox) to Different Experimental Organ Systems. Life Sci. 2018;200:26–30. doi: 10.1016/j.lfs.2018.03.023. PubMed DOI
Octavia Y., Tocchetti C.G., Gabrielson K.L., Janssens S., Crijns H.J., Moens A.L. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 2012;52:1213–1225. doi: 10.1016/j.yjmcc.2012.03.006. PubMed DOI
El-Sayyad H.I., Ismail M.F., Shalaby F.M., Abou-El-Magd R.F., Gaur R.L., Fernando A., Raj M.H.G., Ouhtit A. Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int. J. Biol. Sci. 2009;5:466–473. doi: 10.7150/ijbs.5.466. PubMed DOI PMC
Ayla S., Seckin I., Tanriverdi G., Cengiz M., Eser M., Soner B.C., Oktem G. Doxorubicin induced nephrotoxicity: Protective effect of nicotinamide. Int. J. Cell Biol. 2011;2011:390238. doi: 10.1155/2011/390238. PubMed DOI PMC
Lahoti T.S., Patel D., Thekkemadom V., Beckett R., Ray S.D. Doxorubicin-induced in vivo nephrotoxicity involves oxidative stress-mediated multiple pro- and anti-apoptotic signaling pathways. Curr. Neurovasc. Res. 2012;9:282–295. doi: 10.2174/156720212803530636. PubMed DOI
Camaggi C.M., Comparsi R., Srtocchi E., Testoni F., Angelelli B., Pannuti F. Epirubicin and Doxorubicin Comparative Metabolism and Pharmacokinetics. Cancer Chemother. Pharmacol. 1988;21:221–228. doi: 10.1007/BF00262774. PubMed DOI
Ganey P.E., Kauffman F.C., Thurman R.G. Oxigen Dependent Hepatotoxicity Due to Doxorubicin: Role of Reducing Equivalent Supply in Perfused Rat Liver. Mol. Pharmacol. 1988;34:695–701. PubMed
Ballet F., Vrignaud P., Robert J., Rey C., Poupon R. Hepatic Extraction, Metabolism and Biliary Excretion of Doxorubicin in the Isolated Perfused Rat Liver. Cancer Chemother. Pharmacol. 1987;19:240–245. doi: 10.1007/BF00252979. PubMed DOI
Dodion P., Bernstein A.L., Fox B.M., Bachur N.R. Loss of Fluorescence by Anthracycline Antibiotics: Effects of Xanthine Oxidase and Identification of the Nonfluorescent Metabolites. Cancer Res. 1987;47:1036–1039. PubMed
Aryal B., Jeong J., Rao V.A. Doxorubicin-Induced Carbonylation of Cardiac Myosin Binding Protein C Promote Cardiotoxicity. Proc. Natl. Acad. Sci. USA. 2014;111:2011–2016. doi: 10.1073/pnas.1321783111. PubMed DOI PMC
Sung C.C., Hsu Y.C., Chen C.C., Lin Y.F., Wu C.C. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease. Oxid. Med. Cell. Longev. 2013;2013:301982. doi: 10.1155/2013/301982. PubMed DOI PMC
Karanovic D., Grujic-Milanovic J., Miloradovic Z., Ivanov M., Jovovic D.J., Vajic U.J., Zivotic M., Markovic-Lipkovski J., Mihailovic-Stanojevic N. Effects of Single and Combined Losartan and Tempol Treatments on Oxidative Stress, Kidney Structure and Function in Spontaneously Hypertensive Rats with Early Course of Proteinuric Nephropathy. PLoS ONE. 2016;11:e0161706. doi: 10.1371/journal.pone.0161706. PubMed DOI PMC
Jovanović D.B., Jovović D., Varagić J., Dimitrijević J., Dragojlović Z., Djukanović L. Slowing Progression of Chronic Renal Insufficiency with Captopril in Rats with Spontaneous Arterial Hypertension and Adriamycin Nephropathy. Srp. Arh. Celok. Lek. 2002;130:73–80. doi: 10.2298/SARH0204073J. PubMed DOI
Alshabanah O.A., Hafez M.M., Al-Harbi M.M., Hassan Z.K., Al Rejaie S.S., Asiri Y.A., Sayed-Ahmed M.M. Doxorubicin Toxicity Can be Ameliorated during Antioxidant L-Carnitine Supplementation. Oxid. Med. Cell. Longev. 2014;2:428–433. doi: 10.4161/oxim.3.6.14416. PubMed DOI PMC
Dragojevic-Simic V., Jacevic V., Dobric S., Djordjevic A., Bokonjic D., Bajcetic M., Injac R. Anti-Inflammatory Activity of Fullerenol C60(OH)24 Nano-Particles in a Model of Acute Inflammation in Rats. Dig. J. Nanomater. Biostruct. 2011;6:819–827.
Dorr R.T., Holmes B.C. Dosing considerations with amifostine: A Review of the Literature and Clinical Experience. Semin. Oncol. 1999;26:108–119. PubMed
Sterba M., Popelova O., Vavrova A., Jirkovsky E., Kovaríkova P., Gersl V., Simunek T. Oxidative Stress, Redox Signaling, and Metal Chelation in Anthracycline Cardiotoxicity and Pharmacological Cardioprotection. Antioxid. Redox Signal. 2013;18:899–929. doi: 10.1089/ars.2012.4795. PubMed DOI PMC
Jacevic V., Djordjevic A., Srdjenovic B., Milic-Tores V., Segrt Z., Dragojevic-Simic V., Kuca K. Fullerenol Nanoparticles Prevents Doxorubicin-Induced Acute Hepatotoxicity in Rats. Exp. Mol. Pathol. 2017;102:360–369. doi: 10.1016/j.yexmp.2017.03.005. PubMed DOI
Dragojevic-Simic V.M., Dobric S.L., Bokonjic D.R., Vucinic Z.M., Sinovec S.M., Jacevic V.M., Dogovic N.P. Amifostine Protection against Doxorubicin Cardiotoxicity in Rats. Anti Cancer Drugs. 2004;15:169–178. doi: 10.1097/00001813-200402000-00011. PubMed DOI
Spencer C.M., Goa K.L. Amifostine: A review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Potential as a Radioprotector and Cytotoxic Chemoprotector. Drugs. 1995;50:1001–1031. doi: 10.2165/00003495-199550060-00008. PubMed DOI
Capizzi R.L. The Preclinical Basis for Broad-Spectrum Selective Cytoprotection of Normal Tissue from Cytotoxic Therapies by Amifostine. Semin. Oncol. 1999;26:3–21. doi: 10.1016/S0959-8049(96)00333-4. PubMed DOI
Kouvaris J., Kouloullas V., Vlahos L. Amifostine: The First Selective-Target and Broad-Spectrum Radioprotector. Oncology. 2007;12:738–747. doi: 10.1634/theoncologist.12-6-738. PubMed DOI
Kligerman M.M., Turrisi A.T., Urtasun R.C., Norfleet A.L., Phillips T.L., Barkley T., Rubin P. Final Report On Phase I Trial of WR-2721 before Protracted Fractionated Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 1988;14:1119–1122. doi: 10.1016/0360-3016(88)90387-2. PubMed DOI
Wasserman T.H., Phillips T.L., Ross G., Kane L.J. Differential Protection against Cytotoxic Chemotherapeutic Effects on Bone Marrow CFUs by WR-2721. Cancer Clin. Trial. 1981;4:3–6. PubMed
Shpall E.J., Stemmer S.M., Hami L., Franklin W.A., Shaw L., Bonner H.S., Bearman S.I., Peters W.P., Bast R.C., McCulloch W. Amifostine (WR-2721) Shortens the Engraftment Period of 4-hydroperoxy-Cyclophosphamide-Purged Bone Marrow in Breast Cancer Patients Receiving High-Dose Chemotherapy with Autologous Bone Marrow Support. Blood. 1994;83:3132–3137. PubMed
Rossi F., Filipelli W., Russo S., Filippelli A., Berrino L. Cardiotoxicity of Doxorubicin: Effects of Drugs Inhibiting the Release of Vasoactive Substances. Pharmacol. Toxicol. 1994;75:99–107. doi: 10.1111/j.1600-0773.1994.tb00330.x. PubMed DOI
Herman E.H., Zhang J., Ferrans V. Comparison of the Protective Effects of Desferrioxamine and ICRF-187 against Doxorubicin-Induced Toxicity in Spontaneously Hypertensive Rats. Cancer Chemother. Pharmacol. 1994;35:93–100. doi: 10.1007/BF00686629. PubMed DOI
Herman E.H., Ferrans V., Young R.S.K., Hamlin R.L. Effects of Pretreatment with ICRF-187 on the Total Cumulative Dose of Doxorubicin Tolerated by Beagle Dogs. Cancer Res. 1988;48:6918–6925. PubMed
Herman E.H., El-Hage A., Ferrans V. Protective Effects of ICRF-187 on Doxorubicin-Induced Cardiac and Renal Toxicity in Spontaneously Hypertensive Rats. Toxicol. Appl. Pharmacol. 1988;92:42–53. doi: 10.1016/0041-008X(88)90226-8. PubMed DOI
Alderton P.M., Gross J., Green M.D. Comparative Study of Doxorubicin, Mitoxantrone, and Epirubicin in Combination with ICRF-187 (ADR-529) in Chronic Cardiotoxicity Animal Model. Cancer Res. 1992;52:194–201. PubMed
Green D., Bensley D., Schein P. Preclinical Evaluation of WR-151327: An Orally Active Chemotherapy Protector. Cancer Res. 1994;54:738–741. PubMed
Meriweather V.D., Bachur N.R. Inhibition of DNA and RNA Metabolism by Daunomycin and Adriamycin in L1210 Mouse Leukemia. Cancer Res. 1972;32:1137–1142. PubMed
Castaldi G., Zavagli G. Migration of the Macrophages to the Thymus after Cyclophosphamide. Br. J. Exp. Pathol. 1972;53:28–30. PubMed PMC
List A.F., Heaton R., Glinsmann-Gibson B., Capizzi R.L. Amifostine Stimulates Formation of Multipotent and Erythroid Bone Marrow Progenitors. Leukemia. 1998;12:1596–1602. doi: 10.1038/sj.leu.2401151. PubMed DOI
Douau L., Hu C., Giarratana M.C. Amifostine Improves the Antileukemic Therapeutic Index of Mafosfamide: Implications for Bone Marrow Purging. Blood. 1995;86:2849–2855. PubMed
Romano M.F., Lamberti A., Bisogni R., Garbi C., Pagnano A.M., Auletta P., Tassone P., Turco M.C., Venuta S. Amifostine Inhibits Hematopoietic Progenitor Cell Apoptosis by Activating NF-κB/Rel Transcription Factors. Blood. 1999;94:4060–4066. PubMed
List A.F., Heaton R., Glinsmann-Gibson B. Amifostine is a Potent Stimulant of Hematopoietic Progenitors. Proc. Am. Assoc. Cancer Res. 1995;36:291.
Ridgway D.D., Borzy S.M., Bagby C.M. Granulocyte Macrophage Colony-Stimulating Activity Production by Cultured Human Thymic Nonlymphoid Cells Is Regulated by Endogenous Interleukin 1. Blood. 1988;72:1230–1236. PubMed
Schwartz N.G., Patchen L.M., Neta R., MacVittie T.J. Radioprotection of Mice with Interleukin 1: Relationship to the Number of Spleen Colony-Forming Units. Radiat. Res. 1989;119:101–112. doi: 10.2307/3577370. PubMed DOI
Neta R., Szein B.M., Oppenheim J.J., Gillis S., Douches D.S. The In Vivo Effects of Interleukin 1. I. Bone Marrow Cells Are Induced to Cycle after Administration of Interleukin 1. J. Immunol. 1987;139:1861–1866. PubMed
Schmalbach T.K., Borch R.F. Mechanism of Diethyldithiocarbamate Modulation of Murine Bone Marrow Toxicity. Cancer Res. 1990;50:6218–6221. PubMed
Eppstein D.A., Kurahara C.G., Bruno A.B., Terrell G. Prevention of Doxorubicin-Induced Hematotoxicity in Mice by Interleukin 1. Cancer Res. 1989;49:3955–3960. PubMed
Bertani T., Poggi A., Pozzoni R., Delani F., Sacchi G., Thoua Y., Mecca G., Remuzzi G., Donati M.B. Adriamycin-Induced Nephrotic Syndrome in Rats. Sequence of Pathologic Events. Lab. Investig. 1982;46:16–23. PubMed
Okuda S., Oh Y., Tsuruda H., Onoyama K., Fujumi S., Fujishima M. Adriamycin-Induced Nephropathy as a Model of Chronic Progressive Glomerular Disease. Kidney Int. 1986;29:502–510. doi: 10.1038/ki.1986.28. PubMed DOI
Rašković A., Stilinović N., Kolarović J., Vasović V., Vukmirović S., Mikov M. The Protective Effects of Silymarin against Doxorubicin-Induced Cardiotoxicity and Hepatotoxicity in Rats. Molecules. 2011;16:8601–8613. doi: 10.3390/molecules16108601. PubMed DOI PMC
Su Z., Ye J., Qin Z., Ding X. Protective Effects of Madecassoside against Doxorubicin Induced Nephrotoxicity in Vivo and in Vitro. Sci. Rep. 2015;5:18314. doi: 10.1038/srep18314. PubMed DOI PMC
King P., Perry M. Hepatotoxicity of Chemotherapy. Oncologist. 2001;6:162–176. doi: 10.1634/theoncologist.6-2-162. PubMed DOI
Lee C.S., Tkacs N.C. Current Concepts of Neurohormonal Activation in Heart Failure: Mediators and Mechanisms. AACN Adv. Crit. Care. 2008;19:364–385. doi: 10.1097/01.AACN.0000340718.93742.c4. PubMed DOI
Rea M.E., Dunlap M.E. Renal Hemodynamics in Heart Failure: Implications for Treatment. Curr. Opin. Nephrol. Hypertens. 2008;17:87–92. doi: 10.1097/MNH.0b013e3282f357da. PubMed DOI
Boulanger C.M. Secondary Endothelial Dysfunction: Hypertension and Heart Failure. J. Mol. Cell. Cardiol. 1999;31:39–49. doi: 10.1006/jmcc.1998.0842. PubMed DOI
Chaggar P.S., Malkin C.J., Shaw S.M., Williams S.G., Channer K.S. Neuroendocrine Effects on the Heart and Targets for Therapeutic Manipulation in Heart Failure. Cardiovasc. Ther. 2009;27:187–193. doi: 10.1111/j.1755-5922.2009.00094.x. PubMed DOI
El-Sayed M., Mansour A.M., El-Sawy W.S. Protective Effect of Proanthocyanidins against Doxorubicin-Induced Nephrotoxicity in Rats. J. Biochem. Mol. Toxicol. 2017;31 doi: 10.1002/jbt.21965. PubMed DOI
Petrovic D., Seke M., Labudovic-Borovic M., Jovic D., Borisev I., Srdjenovic B., Rakocevic Z., Pavlovic V., Djordjevic A. Hepatoprotective Effect of Fullerenol/Doxorubicin Nanocomposite in Acute Treatment of Healthy Rats. Exp. Mol. Pathol. 2018;104:199–211. doi: 10.1016/j.yexmp.2018.04.005. PubMed DOI
Marzatico F., Porta C., Moroni M., Bertorelli L., Borasio E., Finotti N., Pansarasa O., Castagna L. In Vitro Antioxidant Properties of Amifostine (WR-2721, Ethyol) Cancer Chemother. Pharmacol. 2000;45:172–176. doi: 10.1007/s002800050026. PubMed DOI
Bjelogrlic S.K., Lukic S.T., Djuricic S.M. Activity of Dexrazoxane and Amifostine against Late Cardiotoxicity Induced by the Combination of Doxorubicin and Cyclophosphamide In Vivo. Basic Clin. Pharmacol. Toxicol. 2013;113:228–238. doi: 10.1111/bcpt.12086. PubMed DOI
Shokrzadeh M., Ghassemi-Barghi N. Antioxidant and Genoprotective Effects of Amifostine against Irinotecan Toxicity in Human Hepatoma Cells. Int. J. Cancer Res. Ther. 2018;3:1–5.
Jacevic V., Kuca K., Milovanovic Z., Bocarov-Stancic A., Rancic I., Bokonjic D., Dragojevic-Simic V., Segrt Z. Gastroprotective Effects of Amifostine in Rats Treated by T-2 Toxin. Toxicol. Rev. 2018;37:123–127. doi: 10.1080/15569543.2017.1329211. DOI
Jensen R.A. Doxorubicin Cardiotoxicity: Contractile Changes after Long Term Treatment in the Rat. J. Pharmacol. Exp. Ther. 1986;236:197–203. PubMed
Jacevic V., Jovic D., Kuca K., Dragojevic-Simic V., Dobric S., Trajkovic S., Borisev I., Segrt Z., Milovanovic Z., Bokonjic D., et al. Effects of Fullerenol Nanoparticles and Amifostine on Radiation-Induced Tissue Damages: Histopathological Analysis. J. Appl. Biomed. 2016;14:285–297. doi: 10.1016/j.jab.2016.05.004. DOI
Acute Toxic Injuries of Rat's Visceral Tissues Induced by Different Oximes
Toxic Injury to Muscle Tissue of Rats Following Acute Oximes Exposure