Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
22794198
PubMed Central
PMC3557437
DOI
10.1089/ars.2012.4795
Knihovny.cz E-resources
- MeSH
- Antioxidants chemistry pharmacology MeSH
- Anthracyclines adverse effects chemistry pharmacology MeSH
- Chelating Agents adverse effects chemistry pharmacology MeSH
- Cardiotonic Agents adverse effects chemistry pharmacology MeSH
- Metals adverse effects MeSH
- Humans MeSH
- Myocardium metabolism MeSH
- Oxidation-Reduction MeSH
- Oxidative Stress * MeSH
- Antineoplastic Agents adverse effects chemistry pharmacology MeSH
- Razoxane adverse effects chemistry pharmacology MeSH
- Reactive Oxygen Species metabolism MeSH
- Signal Transduction * MeSH
- Heart drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- Anthracyclines MeSH
- Chelating Agents MeSH
- Cardiotonic Agents MeSH
- Metals MeSH
- Antineoplastic Agents MeSH
- Razoxane MeSH
- Reactive Oxygen Species MeSH
SIGNIFICANCE: Anthracyclines (doxorubicin, daunorubicin, or epirubicin) rank among the most effective anticancer drugs, but their clinical usefulness is hampered by the risk of cardiotoxicity. The most feared are the chronic forms of cardiotoxicity, characterized by irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be complex, the pivotal role has been traditionally attributed to the iron-mediated formation of reactive oxygen species (ROS). In clinics, the bisdioxopiperazine agent dexrazoxane (ICRF-187) reduces the risk of anthracycline cardiotoxicity without a significant effect on response to chemotherapy. The prevailing concept describes dexrazoxane as a prodrug undergoing bioactivation to an iron-chelating agent ADR-925, which may inhibit anthracycline-induced ROS formation and oxidative damage to cardiomyocytes. RECENT ADVANCES: A considerable body of evidence points to mitochondria as the key targets for anthracycline cardiotoxicity, and therefore it could be also crucial for effective cardioprotection. Numerous antioxidants and several iron chelators have been tested in vitro and in vivo with variable outcomes. None of these compounds have matched or even surpassed the effectiveness of dexrazoxane in chronic anthracycline cardiotoxicity settings, despite being stronger chelators and/or antioxidants. CRITICAL ISSUES: The interpretation of many findings is complicated by the heterogeneity of experimental models and frequent employment of acute high-dose treatments with limited translatability to clinical practice. FUTURE DIRECTIONS: Dexrazoxane may be the key to the enigma of anthracycline cardiotoxicity, and therefore it warrants further investigation, including the search for alternative/complementary modes of cardioprotective action beyond simple iron chelation.
See more in PubMed
Adachi K. Fujiura Y. Mayumi F. Nozuhara A. Sugiu Y. Sakanashi T. Hidaka T. Toshima H. A deletion of mitochondrial DNA in murine doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun. 1993;195:945–951. PubMed
Adams MJ. Lipshultz SE. Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer. 2005;44:600–606. PubMed
al-Harbi MM. al-Gharably NM. al-Shabanah OA. al-Bekairi AM. Osman AM. Tawfik HN. Prevention of doxorubicin-induced myocardial and haematological toxicities in rats by the iron chelator desferrioxamine. Cancer Chemother Pharmacol. 1992;31:200–204. PubMed
Al-Rousan RM. Paturi S. Laurino JP. Kakarla SK. Gutta AK. Walker EM. Blough ER. Deferasirox removes cardiac iron and attenuates oxidative stress in the iron-overloaded gerbil. Am J Hematol. 2009;84:565–570. PubMed
Alderton P. Gross J. Green MD. Role of (+-)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) in modulating free radical scavenging enzymes in doxorubicin-induced cardiomyopathy. Cancer Res. 1990;50:5136–5142. PubMed
Ammar el SM. Said SA. Suddek GM. El-Damarawy SL. Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Can J Physiol Pharmacol. 2011;89:269–276. PubMed
Arcamone F. Cassinelli G. Fantini G. Grein A. Orezzi P. Pol C. Spalla C. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng. 1969;11:1101–1110. PubMed
Arola OJ. Saraste A. Pulkki K. Kallajoki M. Parvinen M. Voipio-Pulkki LM. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res. 2000;60:1789–1792. PubMed
Bachur NR. Gordon SL. Gee MV. Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol Pharmacol. 1977;13:901–910. PubMed
Barnabe N. Zastre JA. Venkataram S. Hasinoff BB. Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radic Biol Med. 2002;33:266–275. PubMed
Barry E. Alvarez JA. Scully RE. Miller TL. Lipshultz SE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007;8:1039–1058. PubMed
Barry EV. Vrooman LM. Dahlberg SE. Neuberg DS. Asselin BL. Athale UH. Clavell LA. Larsen EC. Moghrabi A. Samson Y. Schorin MA. Cohen HJ. Lipshultz SE. Sallan SE. Silverman LB. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol. 2008;26:1106–1111. PubMed
Basser RL. Sobol MM. Duggan G. Cebon J. Rosenthal MA. Mihaly G. Green MD. Comparative study of the pharmacokinetics and toxicity of high-dose epirubicin with or without dexrazoxane in patients with advanced malignancy. J Clin Oncol. 1994;12:1659–1666. PubMed
Batist G. Ramakrishnan G. Rao CS. Chandrasekharan A. Gutheil J. Guthrie T. Shah P. Khojasteh A. Nair MK. Hoelzer K. Tkaczuk K. Park YC. Lee LW. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001;19:1444–1454. PubMed
Bendova P. Mackova E. Haskova P. Vavrova A. Jirkovsky E. Sterba M. Popelova O. Kalinowski DS. Kovarikova P. Vavrova K. Richardson DR. Simunek T. Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury. Chem Res Toxicol. 2010;23:1105–1114. PubMed
Berman E. Heller G. Santorsa J. McKenzie S. Gee T. Kempin S. Gulati S. Andreeff M. Kolitz J. Gabrilove J, et al. Results of a randomized trial comparing idarubicin and cytosine arabinoside with daunorubicin and cytosine arabinoside in adult patients with newly diagnosed acute myelogenous leukemia. Blood. 1991;77:1666–1674. PubMed
Berthiaume JM. Oliveira PJ. Fariss MW. Wallace KB. Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol. 2005;5:257–267. PubMed
Berthiaume JM. Wallace KB. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol. 2007;23:15–25. PubMed
Berthiaume JM. Wallace KB. Persistent alterations to the gene expression profile of the heart subsequent to chronic Doxorubicin treatment. Cardiovasc Toxicol. 2007;7:178–191. PubMed
Bhattacharya M. Ponka P. Hardy P. Hanna N. Varma DR. Lachapelle P. Chemtob S. Prevention of postasphyxia electroretinal dysfunction with a pyridoxal hydrazone. Free Radic Biol Med. 1997;22:11–16. PubMed
Billingham ME. Mason JW. Bristow MR. Daniels JR. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep. 1978;62:865–872. PubMed
Bonadonna G. Monfardini S. De Lena M. Fossati-Bellani F. Beretta G. Phase I and preliminary phase II evaluation of adriamycin (NSC 123127) Cancer Res. 1970;30:2572–2582. PubMed
Bonfante V. Bonadonna G. Villani F. Martini A. Preliminary clinical experience with 4-epidoxorubicin in advanced human neoplasia. Recent Results Cancer Res. 1980;74:192–199. PubMed
Bonfante V. Ferrari L. Villani F. Bonadonna G. Phase I study of 4-demethoxydaunorubicin. Invest New Drugs. 1983;1:161–168. PubMed
Boucek RJ., Jr. Miracle A. Anderson M. Engelman R. Atkinson J. Dodd DA. Persistent effects of doxorubicin on cardiac gene expression. J Mol Cell Cardiol. 1999;31:1435–1446. PubMed
Breed JG. Zimmerman AN. Dormans JA. Pinedo HM. Failure of the antioxidant vitamin E to protect against adriamycin-induced cardiotoxicity in the rabbit. Cancer Res. 1980;40:2033–2038. PubMed
Bristow MR. Billingham ME. Mason JW. Daniels JR. Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep. 1978;62:873–879. PubMed
Bruynzeel AM. Niessen HW. Bronzwaer JG. van der Hoeven JJ. Berkhof J. Bast A. van der Vijgh WJ. van Groeningen CJ. The effect of monohydroxyethylrutoside on doxorubicin-induced cardiotoxicity in patients treated for metastatic cancer in a phase II study. Br J Cancer. 2007;97:1084–1089. PubMed PMC
Bruynzeel AM. Vormer-Bonne S. Bast A. Niessen HW. van der Vijgh WJ. Long-term effects of 7-monohydroxyethylrutoside (monoHER) on DOX-induced cardiotoxicity in mice. Cancer Chemother Pharmacol. 2007;60:509–514. PubMed
Budman DR. Calabro A. Kreis W. In vitro effects of dexrazoxane (Zinecard) and classical acute leukemia therapy: time to consider expanded clinical trials? Leukemia. 2001;15:1517–1520. PubMed
Burke BE. Gambliel H. Olson RD. Bauer FK. Cusack BJ. Prevention by dexrazoxane of down-regulation of ryanodine receptor gene expression in anthracycline cardiomyopathy in the rat. Br J Pharmacol. 2000;131:1–4. PubMed PMC
Buss JL. Hasinoff BB. Ferrous ion strongly promotes the ring opening of the hydrolysis intermediates of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) Arch Biochem Biophys. 1995;317:121–127. PubMed
Buss JL. Hermes-Lima M. Ponka P. Pyridoxal isonicotinoyl hydrazone and its analogues. Adv Exp Med Biol. 2002;509:205–229. PubMed
Capranico G. Zunino F. DNA topoisomerase-trapping antitumour drugs. Eur J Cancer. 1992;28A:2055–2060. PubMed
Carvalho RA. Sousa RP. Cadete VJ. Lopaschuk GD. Palmeira CM. Bjork JA. Wallace KB. Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology. 2010;270:92–98. PubMed
Chaiswing L. Cole MP. Ittarat W. Szweda LI. St Clair DK. Oberley TD. Manganese superoxide dismutase and inducible nitric oxide synthase modify early oxidative events in acute adriamycin-induced mitochondrial toxicity. Mol Cancer Ther. 2005;4:1056–1064. PubMed
Charkoudian LK. Dentchev T. Lukinova N. Wolkow N. Dunaief JL. Franz KJ. Iron prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide. J Inorg Biochem. 2008;102:2130–2135. PubMed PMC
Charkoudian LK. Pham DM. Franz KJ. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J Am Chem Soc. 2006;128:12424–12425. PubMed
Chen B. Peng X. Pentassuglia L. Lim CC. Sawyer DB. Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol. 2007;7:114–121. PubMed
Classen S. Olland S. Berger JM. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci U S A. 2003;100:10629–10634. PubMed PMC
Cole MP. Chaiswing L. Oberley TD. Edelmann SE. Piascik MT. Lin SM. Kiningham KK. St Clair DK. The protective roles of nitric oxide and superoxide dismutase in adriamycin-induced cardiotoxicity. Cardiovasc Res. 2006;69:186–197. PubMed
Creaven PJ. Allen LM. Alford DA. The bioavailability in man of ICRF-159 a new oral antineoplastic agent. J Pharm Pharmacol. 1975;27:914–918. PubMed
Creighton AM. Birnie GD. The effect of bisdioxopiperazines on the synthesis of deoxyribonucleic acid, ribonucleic acid and protein in growing mouse-embryo fibroblasts. Biochem J. 1969;114:58. PubMed PMC
Creighton AM. Hellmann K. Whitecross S. Antitumour activity in a series of bisdiketopiperazines. Nature. 1969;222:384–385. PubMed
Cvetkovic RS. Scott LJ. Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs. 2005;65:1005–1024. PubMed
D'Alessandro N. Candiloro V. Crescimanno M. Flandina C. Dusonchet L. Crosta L. Rausa L. Effects of multiple doxorubicin doses on mouse cardiac and hepatic catalase. Pharmacol Res Commun. 1984;16:145–151. PubMed
Davies KJ. Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986;261:3060–3067. PubMed
Davies KJ. Doroshow JH. Hochstein P. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin. FEBS Lett. 1983;153:227–230. PubMed
de Beer EL. Bottone AE. van Rijk MC. van der Velden J. Voest EE. Dexrazoxane pre-treatment protects skinned rat cardiac trabeculae against delayed doxorubicin-induced impairment of crossbridge kinetics. Br J Pharmacol. 2002;135:1707–1714. PubMed PMC
Della Torre P. Mazue G. Podesta A. Moneta D. Sammartini U. Imondi AR. Protection against doxorubicin-induced cardiotoxicity in weanling rats by dexrazoxane. Cancer Chemother Pharmacol. 1999;43:151–156. PubMed
Deng S. Kruger A. Schmidt A. Metzger A. Yan T. Godtel-Armbrust U. Hasenfuss G. Brunner F. Wojnowski L. Differential roles of nitric oxide synthase isozymes in cardiotoxicity and mortality following chronic doxorubicin treatment in mice. Naunyn Schmiedebergs Arch Pharmacol. 2009;380:25–34. PubMed PMC
Deng S. Wojnowski L. Genotyping the risk of anthracycline-induced cardiotoxicity. Cardiovasc Toxicol. 2007;7:129–134. PubMed
Diop NK. Vitellaro LK. Arnold P. Shang M. Marusak RA. Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: solid state structure, solution thermodynamics, and DNA cleavage activity. J Inorg Biochem. 2000;78:209–216. PubMed
Doroshow JH. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res. 1983;43:460–472. PubMed
Doroshow JH. Prevention of doxorubicin-induced killing of MCF-7 human breast cancer cells by oxygen radical scavengers and iron chelating agents. Biochem Biophys Res Commun. 1986;135:330–335. PubMed
Doroshow JH. Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261:3068–3074. PubMed
Doroshow JH. Locker GY. Myers CE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest. 1980;65:128–135. PubMed PMC
Dresdale AR. Barr LH. Bonow RO. Mathisen DJ. Myers CE. Schwartz DE. d'Angelo T. Rosenberg SA. Prospective randomized study of the role of N-acetyl cysteine in reversing doxorubicin-induced cardiomyopathy. Am J Clin Oncol. 1982;5:657–663. PubMed
Earhart RH. Tutsch KD. Koeller JM. Rodriguez R. Robins HI. Vogel CL. Davis HL. Tormey DC. Pharmacokinetics of (+)-1,2-di(3,5-dioxopiperazin-1-yl)propane intravenous infusions in adult cancer patients. Cancer Res. 1982;42:5255–5261. PubMed
El-Demerdash E. Ali AA. Sayed-Ahmed MM. Osman AM. New aspects in probucol cardioprotection against doxorubicin-induced cardiotoxicity. Cancer Chemother Pharmacol. 2003;52:411–416. PubMed
Elbl L. Hrstkova H. Tomaskova I. Blazek B. Michalek J. Long-term serial echocardiographic examination of late anthracycline cardiotoxicity and its prevention by dexrazoxane in paediatric patients. Eur J Pediatr. 2005;164:678–684. PubMed
Elbl L. Hrstkova H. Tomaskova I. Michalek J. Late anthracycline cardiotoxicity protection by dexrazoxane (ICRF-187) in pediatric patients: echocardiographic follow-up. Support Care Cancer. 2006;14:128–136. PubMed
Ewer MS. Ewer SM. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol. 2010;7:564–575. PubMed
Ewer MS. Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23:2900–2902. PubMed
Felker GM. Thompson RE. Hare JM. Hruban RH. Clemetson DE. Howard DL. Baughman KL. Kasper EK. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342:1077–1084. PubMed
Ferrans VJ. Clark JR. Zhang J. Yu ZX. Herman EH. Pathogenesis and prevention of doxorubicin cardiomyopathy. Tsitologiia. 1997;39:928–937. PubMed
Flandina C. Sanguedolce R. Rausa L. D'Alessandro N. Ameliorative effects of ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane] on the cardiotoxicity induced by doxorubicin or by isoproterenol in the mouse. Res Commun Chem Pathol Pharmacol. 1990;70:259–272. PubMed
Fogli S. Nieri P. Breschi MC. The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage. FASEB J. 2004;18:664–675. PubMed
Fredenburg AM. Wedlund PJ. Skinner TL. Damani LA. Hider RC. Yokel RA. Pharmacokinetics of representative 3-hydroxypyridin-4-ones in rabbits: CP20 and CP94. Drug Metab Dispos. 1993;21:255–258. PubMed
Fujita K. Shinpo K. Yamada K. Sato T. Niimi H. Shamoto M. Nagatsu T. Takeuchi T. Umezawa H. Reduction of adriamycin toxicity by ascorbate in mice and guinea pigs. Cancer Res. 1982;42:309–316. PubMed
Fulbright JM. Huh W. Anderson P. Chandra J. Can anthracycline therapy for pediatric malignancies be less cardiotoxic? Curr Oncol Rep. 2010;12:411–419. PubMed
Galey JB. Potential use of iron chelators against oxidative damage. Adv Pharmacol. 1997;38:167–203. PubMed
Gao J. Xiong Y. Ho YS. Liu X. Chua CC. Xu X. Wang H. Hamdy R. Chua BH. Glutathione peroxidase 1-deficient mice are more susceptible to doxorubicin-induced cardiotoxicity. Biochim Biophys Acta. 2008;1783:2020–2029. PubMed PMC
Geisberg CA. Sawyer DB. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr Hypertens Rep. 2010;12:404–410. PubMed PMC
Gersl V. Hrdina R. Noninvasive polygraphic cardiac changes in daunorubicin-induced cardiomyopathy in rabbits. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove. 1994;37:49–55. PubMed
Gianni L. Herman EH. Lipshultz SE. Minotti G. Sarvazyan N. Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. 2008;26:3777–3784. PubMed PMC
Gianni L. Salvatorelli E. Minotti G. Anthracycline cardiotoxicity in breast cancer patients: synergism with trastuzumab and taxanes. Cardiovasc Toxicol. 2007;7:67–71. PubMed
Glickstein H. El RB. Link G. Breuer W. Konijn AM. Hershko C. Nick H. Cabantchik ZI. Action of chelators in iron-loaded cardiac cells: Accessibility to intracellular labile iron and functional consequences. Blood. 2006;108:3195–3203. PubMed
Goodman LS. Brunton LL. Chabner B. Knollmann BC. Goodman & Gilman's Pharmacological Basis of Therapeutics. New York: McGraw-Hill; 2010.
Goorin AM. Chauvenet AR. Perez-Atayde AR. Cruz J. McKone R. Lipshultz SE. Initial congestive heart failure, six to ten years after doxorubicin chemotherapy for childhood cancer. J Pediatr. 1990;116:144–147. PubMed
Goormaghtigh E. Huart P. Praet M. Brasseur R. Ruysschaert JM. Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophys Chem. 1990;35:247–257. PubMed
Gosalvez M. Blanco M. Hunter J. Miko M. Chance B. Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. Eur J Cancer. 1974;10:567–574. PubMed
Gratia S. Kay L. Michelland S. Seve M. Schlattner U. Tokarska-Schlattner M. Cardiac phosphoproteome reveals cell signaling events involved in doxorubicin cardiotoxicity. J Proteomics. 2012;75:4705–4716. PubMed
Greenberg RE. Bahnson RR. Wood D. Childs SJ. Bellingham C. Edson M. Bamberger MH. Steinberg GD. Israel M. Sweatman T. Giantonio B. O'Dwyer PJ. Initial report on intravesical administration of N-trifluoroacetyladriamycin-14-valerate (AD 32) to patients with refractory superficial transitional cell carcinoma of the urinary bladder. Urology. 1997;49:471–475. PubMed
Gustafson DL. Swanson JD. Pritsos CA. Modulation of glutathione and glutathione dependent antioxidant enzymes in mouse heart following doxorubicin therapy. Free Radic Res Commun. 1993;19:111–120. PubMed
Hackbarth M. Haas N. Fotopoulou C. Lichtenegger W. Sehouli J. Chemotherapy-induced dermatological toxicity: frequencies and impact on quality of life in women's cancers. Results of a prospective study. Support Care Cancer. 2008;16:267–273. PubMed
Hale JP. Lewis IJ. Anthracyclines: cardiotoxicity and its prevention. Arch Dis Child. 1994;71:457–462. PubMed PMC
Halliwell B. Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford; New York: Oxford University Press; 2007.
Hasinoff BB. Pharmacodynamics of the hydrolysis-activation of the cardioprotective agent (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane. J Pharm Sci. 1994;83:64–67. PubMed
Hasinoff BB. Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovasc Toxicol. 2002;2:111–118. PubMed
Hasinoff BB. Hellmann K. Herman EH. Ferrans VJ. Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Curr Med Chem. 1998;5:1–28. PubMed
Hasinoff BB. Patel D. The iron chelator Dp44mT does not protect myocytes against doxorubicin. J Inorg Biochem. 2009;103:1093–1101. PubMed
Hasinoff BB. Patel D. Wu X. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radic Biol Med. 2003;35:1469–1479. PubMed
Hasinoff BB. Schnabl KL. Marusak RA. Patel D. Huebner E. Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovasc Toxicol. 2003;3:89–99. PubMed
Hasinoff BB. Schroeder PE. Patel D. The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Mol Pharmacol. 2003;64:670–678. PubMed
Hasinoff BB. Yalowich JC. Ling Y. Buss JL. The effect of dexrazoxane (ICRF-187) on doxorubicin- and daunorubicin-mediated growth inhibition of Chinese hamster ovary cells. Anticancer Drugs. 1996;7:558–567. PubMed
Haskova P. Koubkova L. Vavrova A. Mackova E. Hruskova K. Kovarikova P. Vavrova K. Simunek T. Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicology. 2011;289:122–131. PubMed
Hellmann K. Rhomberg W. Razoxane and Dexrazoxane—Two Multifunctional Agents. Dordrecht: Springer Netherlands; 2010. pp. 167–213.
Hensley ML. Hagerty KL. Kewalramani T. Green DM. Meropol NJ. Wasserman TH. Cohen GI. Emami B. Gradishar WJ. Mitchell RB. Thigpen JT. Trotti A., 3rd von Hoff D. Schuchter LM. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27:127–145. PubMed
Heon S. Bernier M. Servant N. Dostanic S. Wang C. Kirby GM. Alpert L. Chalifour LE. Dexrazoxane does not protect against doxorubicin-induced damage in young rats. Am J Physiol Heart Circ Physiol. 2003;285:H499–H506. PubMed
Herman E. Ardalan B. Bier C. Waravdekar V. Krop S. Reduction of daunorubicin lethality and myocardial cellular alterations by pretreatment with ICRF-187 in Syrian golden hamsters. Cancer Treat Rep. 1979;63:89–92. PubMed
Herman EH. el-Hage AN. Creighton AM. Witiak DT. Ferrans VJ. Comparison of the protective effect of ICRF-187 and structurally related analogues against acute daunorubicin toxicity in Syrian golden hamsters. Res Commun Chem Pathol Pharmacol. 1985;48:39–55. PubMed
Herman EH. Ferrans VJ. Pretreatment with ICRF-187 provides long-lasting protection against chronic daunorubicin cardiotoxicity in rabbits. Cancer Chemother Pharmacol. 1986;16:102–106. PubMed
Herman EH. Ferrans VJ. Timing of treatment with ICRF-187 and its effect on chronic doxorubicin cardiotoxicity. Cancer Chemother Pharmacol. 1993;32:445–449. PubMed
Herman EH. Ferrans VJ. Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin Oncol. 1998;25:15–21. PubMed
Herman EH. Ferrans VJ. Myers CE. Van Vleet JF. Comparison of the effectiveness of (+/-)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) and N-acetylcysteine in preventing chronic doxorubicin cardiotoxicity in beagles. Cancer Res. 1985;45:276–281. PubMed
Herman EH. Ferrans VJ. Young RS. Hamlin RL. Effect of pretreatment with ICRF-187 on the total cumulative dose of doxorubicin tolerated by beagle dogs. Cancer Res. 1988;48:6918–6925. PubMed
Herman EH. Mhatre RM. Chadwick DP. Modification of some of the toxic effects of daunomycin (NSC-82,151) by pretreatment with the antineoplastic agent ICRF 159 (NSC-129,943) Toxicol Appl Pharmacol. 1974;27:517–526. PubMed
Herman EH. Mhatre RM. Lee IP. Waravdekar VS. Prevention of the cardiotoxic effects of adriamycin and daunomycin in the isolated dog heart. Proc Soc Exp Biol Med. 1972;140:234–239. PubMed
Herman EH. Zhang J. Ferrans VJ. Comparison of the protective effects of desferrioxamine and ICRF-187 against doxorubicin-induced toxicity in spontaneously hypertensive rats. Cancer Chemother Pharmacol. 1994;35:93–100. PubMed
Herman EH. Zhang J. Chadwick DP. Ferrans VJ. Comparison of the protective effects of amifostine and dexrazoxane against the toxicity of doxorubicin in spontaneously hypertensive rats. Cancer Chemother Pharmacol. 2000;45:329–334. PubMed
Herman EH. Zhang J. Hasinoff BB. Chadwick DP. Clark JR., Jr. Ferrans VJ. Comparison of the protective effects against chronic doxorubicin cardiotoxicity and the rates of iron (III) displacement reactions of ICRF-187 and other bisdiketopiperazines. Cancer Chemother Pharmacol. 1997;40:400–408. PubMed
Herman EH. Zhang J. Rifai N. Lipshultz SE. Hasinoff BB. Chadwick DP. Knapton A. Chai J. Ferrans VJ. The use of serum levels of cardiac troponin T to compare the protective activity of dexrazoxane against doxorubicin- and mitoxantrone-induced cardiotoxicity. Cancer Chemother Pharmacol. 2001;48:297–304. PubMed
Hermes-Lima M. Nagy E. Ponka P. Schulman HM. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) protects plasmid pUC-18 DNA against *OH-mediated strand breaks. Free Radic Biol Med. 1998;25:875–880. PubMed
Hershko C. Link G. Tzahor M. Kaltwasser JP. Athias P. Grynberg A. Pinson A. Anthracycline toxicity is potentiated by iron and inhibited by deferoxamine: studies in rat heart cells in culture. J Lab Clin Med. 1993;122:245–251. PubMed
Hershko C. Link G. Tzahor M. Pinson A. The role of iron and iron chelators in anthracycline cardiotoxicity. Leuk Lymphoma. 1993;11:207–214. PubMed
Hochster H. Liebes L. Wadler S. Oratz R. Wernz JC. Meyers M. Green M. Blum RH. Speyer JL. Pharmacokinetics of the cardioprotector ADR-529 (ICRF-187) in escalating doses combined with fixed-dose doxorubicin. J Natl Cancer Inst. 1992;84:1725–1730. PubMed
Hoffbrand AV. Cohen A. Hershko C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood. 2003;102:17–24. PubMed
Horackova M. Ponka P. Byczko Z. The antioxidant effects of a novel iron chelator salicylaldehyde isonicotinoyl hydrazone in the prevention of H(2)O(2) injury in adult cardiomyocytes. Cardiovasc Res. 2000;47:529–536. PubMed
Hrdina R. Gersl V. Klimtova I. Simunek T. Machackova J. Adamcova M. Anthracycline-induced cardiotoxicity. Acta Medica (Hradec Kralove) 2000;43:75–82. PubMed
Hrdina R. Gersl V. Klimtova I. Simunek T. Mazurova Y. Machackova J. Adamcova M. Effect of sodium 2,3-dimercaptopropane-1-sulphonate (DMPS) on chronic daunorubicin toxicity in rabbits: comparison with dexrazoxane. Acta Medica (Hradec Kralove) 2002;45:99–105. PubMed
Huang ZX. May PM. Quinlan KM. Williams DR. Creighton AM. Metal binding by pharmaceuticals. Part 2. Interactions of Ca(II), Cu(II), Fe(II), Mg(II), Mn(II) and Zn(II) with the intracellular hydrolysis products of the antitumour agent ICRF 159 and its inactive homologue ICRF 192. Agents Actions. 1982;12:536–542. PubMed
Hudson MM. Rai SN. Nunez C. Merchant TE. Marina NM. Zalamea N. Cox C. Phipps S. Pompeu R. Rosenthal D. Noninvasive evaluation of late anthracycline cardiac toxicity in childhood cancer survivors. J Clin Oncol. 2007;25:3635–3643. PubMed
This reference has been deleted
This reference has been deleted
This reference has been deleted
This reference has been deleted
Imondi AR. Preclinical models of cardiac protection and testing for effects of dexrazoxane on doxorubicin antitumor effects. Semin Oncol. 1998;25:22–30. PubMed
Imondi AR. Della Torre P. Mazue G. Sullivan TM. Robbins TL. Hagerman LM. Podesta A. Pinciroli G. Dose-response relationship of dexrazoxane for prevention of doxorubicin-induced cardiotoxicity in mice, rats, and dogs. Cancer Res. 1996;56:4200–4204. PubMed
Jahnukainen K. Jahnukainen T. Salmi TT. Svechnikov K. Eksborg S. Soder O. Amifostine protects against early but not late toxic effects of doxorubicin in infant rats. Cancer Res. 2001;61:6423–6427. PubMed
Jansson PJ. Hawkins CL. Lovejoy DB. Richardson DR. The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: an EPR study. J Inorg Biochem. 2010;104:1224–1228. PubMed
Javadov S. Hunter JC. Barreto-Torres G. Parodi-Rullan R. Targeting the mitochondrial permeability transition: cardiac ischemia-reperfusion versus carcinogenesis. Cell Physiol Biochem. 2011;27:179–190. PubMed
Jensen BV. Skovsgaard T. Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13:699–709. PubMed
Jones MM. Basinger MA. A hypothesis for the selection of chelate antidotes for toxic metals. Med Hypotheses. 1982;9:445–453. PubMed
Jones RL. Swanton C. Ewer MS. Anthracycline cardiotoxicity. Expert Opin Drug Saf. 2006;5:791–809. PubMed
Junjing Z. Yan Z. Baolu Z. Scavenging effects of dexrazoxane on free radicals. J Clin Biochem Nutr. 2010;47:238–245. PubMed PMC
Kalay N. Basar E. Ozdogru I. Er O. Cetinkaya Y. Dogan A. Inanc T. Oguzhan A. Eryol NK. Topsakal R. Ergin A. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–2262. PubMed
Kalinowski DS. Richardson DR. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev. 2005;57:547–583. PubMed
Kang YJ. Chen Y. Epstein PN. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem. 1996;271:12610–12616. PubMed
Kang YJ. Zhou ZX. Wang GW. Buridi A. Klein JB. Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem. 2000;275:13690–13698. PubMed
Keizer HG. Pinedo HM. Schuurhuis GJ. Joenje H. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol Ther. 1990;47:219–231. PubMed
Kim DS. Kim HR. Woo ER. Hong ST. Chae HJ. Chae SW. Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem Pharmacol. 2005;70:1066–1078. PubMed
Klimtova I. Simunek T. Mazurova Y. Hrdina R. Gersl V. Adamcova M. Comparative study of chronic toxic effects of daunorubicin and doxorubicin in rabbits. Hum Exp Toxicol. 2002;21:649–657. PubMed
Kovarikova P. Klimes J. Sterba M. Popelova O. Gersl V. Ponka P. HPLC determination of a novel aroylhydrazone iron chelator (o-108) in rabbit plasma and its application to a pilot pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;838:107–112. PubMed
Kovarikova P. Klimes J. Sterba M. Popelova O. Mokry M. Gersl V. Ponka P. Development of high-performance liquid chromatographic determination of salicylaldehyde isonicotinoyl hydrazone in rabbit plasma and application of this method to an in vivo study. J Sep Sci. 2005;28:1300–1306. PubMed
Kovarikova P. Mrkvickova Z. Klimes J. Investigation of the stability of aromatic hydrazones in plasma and related biological material. J Pharm Biomed Anal. 2008;47:360–370. PubMed
Kozluca O. Olcay E. Surucu S. Guran Z. Kulaksiz T. Uskent N. Prevention of doxorubicin induced cardiotoxicity by catechin. Cancer Lett. 1996;99:1–6. PubMed
Krischer JP. Epstein S. Cuthbertson DD. Goorin AM. Epstein ML. Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997;15:1544–1552. PubMed
Kurz T. Gustafsson B. Brunk UT. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J. 2006;273:3106–3117. PubMed
Kwok JC. Richardson DR. Unexpected anthracycline-mediated alterations in iron-regulatory protein-RNA-binding activity: the iron and copper complexes of anthracyclines decrease RNA-binding activity. Mol Pharmacol. 2002;62:888–900. PubMed
Kwok JC. Richardson DR. Anthracyclines induce accumulation of iron in ferritin in myocardial and neoplastic cells: inhibition of the ferritin iron mobilization pathway. Mol Pharmacol. 2003;63:849–861. PubMed
Langer SW. Sehested M. Jensen PB. Treatment of anthracycline extravasation with dexrazoxane. Clin Cancer Res. 2000;6:3680–3686. PubMed
Langer SW. Sehested M. Jensen PB. Dexrazoxane is a potent and specific inhibitor of anthracycline induced subcutaneous lesions in mice. Ann Oncol. 2001;12:405–410. PubMed
Lebrecht D. Geist A. Ketelsen UP. Haberstroh J. Setzer B. Walker UA. Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol. 2007;151:771–778. PubMed PMC
Lebrecht D. Kirschner J. Geist A. Haberstroh J. Walker UA. Respiratory chain deficiency precedes the disrupted calcium homeostasis in chronic doxorubicin cardiomyopathy. Cardiovasc Pathol. 2010;19:e167–e174. PubMed
Lebrecht D. Kokkori A. Ketelsen UP. Setzer B. Walker UA. Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathol. 2005;207:436–444. PubMed
Lebrecht D. Setzer B. Ketelsen UP. Haberstroh J. Walker UA. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation. 2003;108:2423–2429. PubMed
Lebrecht D. Setzer B. Rohrbach R. Walker UA. Mitochondrial DNA and its respiratory chain products are defective in doxorubicin nephrosis. Nephrol Dial Transplant. 2004;19:329–336. PubMed
Lebrecht D. Walker UA. Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol. 2007;7:108–113. PubMed
Lefrak EA. Pitha J. Rosenheim S. Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32:302–314. PubMed
Legha SS. Benjamin RS. Mackay B. Ewer M. Wallace S. Valdivieso M. Rasmussen SL. Blumenschein GR. Freireich EJ. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med. 1982;96:133–139. PubMed
Legha SS. Wang YM. Mackay B. Ewer M. Hortobagyi GN. Benjamin RS. Ali MK. Clinical and pharmacologic investigation of the effects of alpha-tocopherol on adriamycin cardiotoxicity. Ann N Y Acad Sci. 1982;393:411–418. PubMed
Lenihan DJ. Diagnosis and management of heart failure in cancer patient. In: Ewer MS, editor; Yeh E, editor. Cancer and the Heart. Hamilton: BC Decker; 2006. pp. 129–138.
Leonard RC. Williams S. Tulpule A. Levine AM. Oliveros S. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet) Breast. 2009;18:218–224. PubMed
Levitt GA. Dorup I. Sorensen K. Sullivan I. Does anthracycline administration by infusion in children affect late cardiotoxicity? Br J Haematol. 2004;124:463–468. PubMed
Li T. Danelisen I. Bello-Klein A. Singal PK. Effects of probucol on changes of antioxidant enzymes in adriamycin-induced cardiomyopathy in rats. Cardiovasc Res. 2000;46:523–530. PubMed
Li T. Singal PK. Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation. 2000;102:2105–2110. PubMed
Lim CC. Zuppinger C. Guo X. Kuster GM. Helmes M. Eppenberger HM. Suter TM. Liao R. Sawyer DB. Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem. 2004;279:8290–8299. PubMed
Lim CK. Kalinowski DS. Richardson DR. Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich's ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class. Mol Pharmacol. 2008;74:225–235. PubMed
Link G. Tirosh R. Pinson A. Hershko C. Role of iron in the potentiation of anthracycline cardiotoxicity: identification of heart cell mitochondria as a major site of iron-anthracycline interaction. J Lab Clin Med. 1996;127:272–278. PubMed
Lipshultz SE. Colan SD. Gelber RD. Perez-Atayde AR. Sallan SE. Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–815. PubMed
Lipshultz SE. Giantris AL. Lipsitz SR. Kimball Dalton V. Asselin BL. Barr RD. Clavell LA. Hurwitz CA. Moghrabi A. Samson Y. Schorin MA. Gelber RD. Sallan SE. Colan SD. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91–01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol. 2002;20:1677–1682. PubMed
Lipshultz SE. Rifai N. Dalton VM. Levy DE. Silverman LB. Lipsitz SR. Colan SD. Asselin BL. Barr RD. Clavell LA. Hurwitz CA. Moghrabi A. Samson Y. Schorin MA. Gelber RD. Sallan SE. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351:145–153. PubMed
Lipshultz SE. Scully RE. Lipsitz SR. Sallan SE. Silverman LB. Miller TL. Barry EV. Asselin BL. Athale U. Clavell LA. Larsen E. Moghrabi A. Samson Y. Michon B. Schorin MA. Cohen HJ. Neuberg DS. Orav EJ. Colan SD. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010;11:950–961. PubMed PMC
Lopez M. Vici P. Di Lauro K. Conti F. Paoletti G. Ferraironi A. Sciuto R. Giannarelli D. Maini CL. Randomized prospective clinical trial of high-dose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol. 1998;16:86–92. PubMed
Lukinova N. Iacovelli J. Dentchev T. Wolkow N. Hunter A. Amado D. Ying GS. Sparrow JR. Dunaief JL. Iron chelation protects the retinal pigment epithelial cell line ARPE-19 against cell death triggered by diverse stimuli. Invest Ophthalmol Vis Sci. 2009;50:1440–1447. PubMed PMC
Lyu YL. Kerrigan JE. Lin CP. Azarova AM. Tsai YC. Ban Y. Liu LF. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–8846. PubMed
Mackay B. Ewer MS. Carrasco CH. Benjamin RS. Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol. 1994;18:203–211. PubMed
Marcillat O. Zhang Y. Davies KJ. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem J. 1989;259:181–189. PubMed PMC
Martin E. Thougaard AV. Grauslund M. Jensen PB. Bjorkling F. Hasinoff BB. Tjornelund J. Sehested M. Jensen LH. Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy. Toxicology. 2009;255:72–79. PubMed
Marty M. Espie M. Llombart A. Monnier A. Rapoport BL. Stahalova V. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol. 2006;17:614–622. PubMed
Maslov MY. Chacko VP. Hirsch GA. Akki A. Leppo MK. Steenbergen C. Weiss RG. Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2010;299:H332–H337. PubMed PMC
Matsui H. Morishima I. Numaguchi Y. Toki Y. Okumura K. Hayakawa T. Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci. 1999;65:1265–1274. PubMed
Mavinkurve-Groothuis AM. Kapusta L. Nir A. Groot-Loonen J. The role of biomarkers in the early detection of anthracycline-induced cardiotoxicity in children: a review of the literature. Pediatr Hematol Oncol. 2008;25:655–664. PubMed
Mcfalls EO. Paulson DJ. Gilbert EF. Shug AL. Carnitine Protection against Adriamycin-Induced Cardiomyopathy in Rats. Life Sci. 1986;38:497–505. PubMed
Menna P. Gonzalez Paz O. Chello M. Covino E. Salvatorelli E. Minotti G. Anthracycline cardiotoxicity. Expert Opin Drug Saf. 2012;11(Suppl 1):S21–S36. PubMed
Menna P. Recalcati S. Cairo G. Minotti G. An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc Toxicol. 2007;7:80–85. PubMed
Menna P. Salvatorelli E. Minotti G. Cardiotoxicity of antitumor drugs. Chem Res Toxicol. 2008;21:978–989. PubMed
Minotti G. Menna P. Salvatorelli E. Cairo G. Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229. PubMed
Minotti G. Ronchi R. Salvatorelli E. Menna P. Cairo G. Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Res. 2001;61:8422–8428. PubMed
Miranda CJ. Makui H. Soares RJ. Bilodeau M. Mui J. Vali H. Bertrand R. Andrews NC. Santos MM. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood. 2003;102:2574–2580. PubMed
Mladenka P. Kalinowski DS. Haskova P. Bobrovova Z. Hrdina R. Simunek T. Nachtigal P. Semecky V. Vavrova J. Holeckova M. Palicka V. Mazurova Y. Jansson PJ. Richardson DR. The novel iron chelator, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone, reduces catecholamine-mediated myocardial toxicity. Chem Res Toxicol. 2009;22:208–217. PubMed
Molina-Holgado F. Gaeta A. Francis PT. Williams RJ. Hider RC. Neuroprotective actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. J Neurochem. 2008;105:2466–2476. PubMed
Muindi JR. Sinha BK. Gianni L. Myers CE. Hydroxyl radical production and DNA damage induced by anthracycline-iron complex. FEBS Lett. 1984;172:226–230. PubMed
Mukhopadhyay P. Rajesh M. Batkai S. Kashiwaya Y. Hasko G. Liaudet L. Szabo C. Pacher P. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296:H1466–H1483. PubMed PMC
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13. PubMed PMC
Myers C. Bonow R. Palmeri S. Jenkins J. Corden B. Locker G. Doroshow J. Epstein S. A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy by N-acetylcysteine. Semin Oncol. 1983;10:53–55. PubMed
Myers CE. Gianni L. Simone CB. Klecker R. Greene R. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry. 1982;21:1707–1712. PubMed
Myers CE. McGuire W. Young R. Adriamycin: amelioration of toxicity by alpha-tocopherol. Cancer Treat Rep. 1976;60:961–962. PubMed
Nakamura T. Ueda Y. Juan Y. Katsuda S. Takahashi H. Koh E. Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation. 2000;102:572–578. PubMed
O'Brien ME. Wigler N. Inbar M. Rosso R. Grischke E. Santoro A. Catane R. Kieback DG. Tomczak P. Ackland SP. Orlandi F. Mellars L. Alland L. Tendler C. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15:440–449. PubMed
O'Brien TA. Russell SJ. Vowels MR. Oswald CM. Tiedemann K. Shaw PJ. Lockwood L. Teague L. Rice M. Marshall GM. Results of consecutive trials for children newly diagnosed with acute myeloid leukemia from the Australian and New Zealand Children's Cancer Study Group. Blood. 2002;100:2708–2716. PubMed
Ohkura K. Lee JD. Shimizu H. Nakano A. Uzui H. Horikoshi M. Fujibayashi Y. Yonekura Y. Ueda T. Mitochondrials complex I activity is reduced in latent adriamycin-induced cardiomyopathy of rat. Mol Cell Biochem. 2003;248:203–208. PubMed
Oliveira PJ. Bjork JA. Santos MS. Leino RL. Froberg MK. Moreno AJ. Wallace KB. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol. 2004;200:159–168. PubMed
Oliveira PJ. Wallace KB. Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats—relevance for mitochondrial dysfunction. Toxicology. 2006;220:160–168. PubMed
Pacher P. Liaudet L. Bai P. Mabley JG. Kaminski PM. Virag L. Deb A. Szabo E. Ungvari Z. Wolin MS. Groves JT. Szabo C. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation. 2003;107:896–904. PubMed
Pan SS. Bachur NR. Xanthine oxidase catalyzed reductive cleavage of anthracycline antibiotics and free radical formation. Mol Pharmacol. 1980;17:95–99. PubMed
Panjrath GS. Patel V. Valdiviezo CI. Narula N. Narula J. Jain D. Potentiation of Doxorubicin cardiotoxicity by iron loading in a rodent model. J Am Coll Cardiol. 2007;49:2457–2464. PubMed
Persoon-Rothert M. van der Valk-Kokshoorn EJ. Egas-Kenniphaas JM. Mauve I. van der Laarse A. Isoproterenol-induced cytotoxicity in neonatal rat heart cell cultures is mediated by free radical formation. J Mol Cell Cardiol. 1989;21:1285–1291. PubMed
Petrelli F. Borgonovo K. Cabiddu M. Ghilardi M. Barni S. Neoadjuvant chemotherapy and concomitant trastuzumab in breast cancer: a pooled analysis of two randomized trials. Anticancer Drugs. 2011;22:128–135. PubMed
Pigram WJ. Fuller W. Hamilton LD. Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat New Biol. 1972;235:17–19. PubMed
Popelova O. Sterba M. Haskova P. Simunek T. Hroch M. Guncova I. Nachtigal P. Adamcova M. Gersl V. Mazurova Y. Dexrazoxane-afforded protection against chronic anthracycline cardiotoxicity in vivo: effective rescue of cardiomyocytes from apoptotic cell death. Br J Cancer. 2009;101:792–802. PubMed PMC
Popelova O. Sterba M. Simunek T. Mazurova Y. Guncova I. Hroch M. Adamcova M. Gersl V. Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. J Pharmacol Exp Ther. 2008;326:259–269. PubMed
Przybyszewski WM. Widel M. Koterbicka A. Failure of Cardioxane (ICRF-187, dexrazoxane) to limit peroxidative heart damage in rats after gamma irradiation or farmorubicin (4′-epidoxorubicin) treatment. Toxic Subst Mech. 1997;16:133–149.
Rajagopalan S. Politi PM. Sinha BK. Myers CE. Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res. 1988;48:4766–4769. PubMed
Ramu E. Korach A. Houminer E. Schneider A. Elami A. Schwalb H. Dexrazoxane prevents myocardial ischemia/reperfusion-induced oxidative stress in the rat heart. Cardiovasc Drugs Ther. 2006;20:343–348. PubMed
Rao VA. Zhang J. Klein SR. Espandiari P. Knapton A. Dickey JS. Herman E. Shacter EB. The iron chelator Dp44mT inhibits the proliferation of cancer cells but fails to protect from doxorubicin-induced cardiotoxicity in spontaneously hypertensive rats. Cancer Chemother Pharmacol. 2011;68:1125–1134. PubMed
Repta AJ. Baltezor MJ. Bansal PC. Utilization of an enantiomer as a solution to a pharmaceutical problem: application to solubilization of 1,2-di(4-piperazine-2,6-dione)propane. J Pharm Sci. 1976;65:238–242. PubMed
Revis NW. Marusic N. Glutathione peroxidase activity and selenium concentration in the hearts of doxorubicin-treated rabbits. J Mol Cell Cardiol. 1978;10:945–951. PubMed
Rigatos SK. Stathopoulos GP. Dontas I. Perrea-Kotsarelis D. Couris E. Karayannacos PE. Deliconstantinos G. Investigation of doxorubicin tissue toxicity: does amifostine provide chemoprotection? An experimental study. Anticancer Res. 2002;22:129–134. PubMed
Robert J. Long-term and short-term models for studying anthracycline cardiotoxicity and protectors. Cardiovasc Toxicol. 2007;7:135–139. PubMed
Robison TW. Giri SN. Wilson DW. Effects of chronic administration of doxorubicin on myocardial creatine phosphokinase and antioxidant defenses and levels of lipid peroxidation in tissues and plasma of rats. J Biochem Toxicol. 1989;4:87–94. PubMed
Rosing H. ten Bokkel Huinink WW. van Gijn R. Rombouts RF. Bult A. Beijnen JH. Comparative open, randomized, cross-over bioequivalence study of two intravenous dexrazoxane formulations (Cardioxane and ICRF-187) in patients with advanced breast cancer, treated with 5-fluorouracil-doxorubicin-cyclophosphamide (FDC) Eur J Drug Metab Pharmacokinet. 1999;24:69–77. PubMed
Ruiz-Ruiz C. Robledo G. Cano E. Redondo JM. Lopez-Rivas A. Characterization of p53-mediated up-regulation of CD95 gene expression upon genotoxic treatment in human breast tumor cells. J Biol Chem. 2003;278:31667–31675. PubMed
Saad SY. Najjar TA. Al-Rikabi AC. The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol Res. 2001;43:211–218. PubMed
Saad SY. Najjar TA. Arafah MM. Cardioprotective effects of subcutaneous ebselen against daunorubicin-induced cardiomyopathy in rats. Basic Clin Pharmacol Toxicol. 2006;99:412–417. PubMed
Sadzuka Y. Sugiyama T. Shimoi K. Kinae N. Hirota S. Protective effect of flavonoids on doxorubicin-induced cardiotoxicity. Toxicol Lett. 1997;92:1–7. PubMed
Santos DL. Moreno AJ. Leino RL. Froberg MK. Wallace KB. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol. 2002;185:218–227. PubMed
Sawaya H. Sebag IA. Plana JC. Januzzi JL. Ky B. Cohen V. Gosavi S. Carver JR. Wiegers SE. Martin RP. Picard MH. Gerszten RE. Halpern EF. Passeri J. Kuter I. Scherrer-Crosbie M. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–1380. PubMed PMC
Sawyer DB. Fukazawa R. Arstall MA. Kelly RA. Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res. 1999;84:257–265. PubMed
Sayed-Ahmed MM. Salman TM. Gaballah HE. El-Naga SAA. Nicolai R. Calvani M. Propionyl-L-carnitine as protector against adriamycin-induced cardiomyopathy. Pharmacol Res. 2001;43:513–520. PubMed
This reference has been deleted
This reference has been deleted
This reference has been deleted
This reference has been deleted
Schroeder PE. Hasinoff BB. The doxorubicin-cardioprotective drug dexrazoxane undergoes metabolism in the rat to its metal ion-chelating form ADR-925. Cancer Chemother Pharmacol. 2002;50:509–513. PubMed
Schroeder PE. Hasinoff BB. Metabolism of the one-ring open metabolites of the cardioprotective drug dexrazoxane to its active metal-chelating form in the rat. Drug Metab Dispos. 2005;33:1367–1372. PubMed
Schroeder PE. Jensen PB. Sehested M. Hofland KF. Langer SW. Hasinoff BB. Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemother Pharmacol. 2003;52:167–174. PubMed
Schroeder PE. Wang GQ. Burczynski FJ. Hasinoff BB. Metabolism of the cardioprotective drug dexrazoxane and one of its metabolites by isolated rat myocytes, hepatocytes, and blood. Drug Metab Dispos. 2005;33:719–725. PubMed
Scully RE. Lipshultz SE. Anthracycline cardiotoxicity in long-term survivors of childhood cancer. Cardiovasc Toxicol. 2007;7:122–128. PubMed
Serrano J. Palmeira CM. Kuehl DW. Wallace KB. Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochim Biophys Acta. 1999;1411:201–205. PubMed
Seymour L. Bramwell V. Moran LA. Use of dexrazoxane as a cardioprotectant in patients receiving doxorubicin or epirubicin chemotherapy for the treatment of cancer. The Provincial Systemic Treatment Disease Site Group. Cancer Prev Control. 1999;3:145–159. PubMed
Shapira J. Gotfried M. Lishner M. Ravid M. Reduced cardiotoxicity of doxorubicin by a 6-hour infusion regimen. A prospective randomized evaluation. Cancer. 1990;65:870–873. PubMed
Siegel R. Naishadham D. Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29. PubMed
Sieswerda E. Kremer LC. Caron HN. van Dalen EC. The use of liposomal anthracycline analogues for childhood malignancies: A systematic review. Eur J Cancer. 2011;47:2000–2008. PubMed
Simunek T. Boer C. Bouwman RA. Vlasblom R. Versteilen AM. Sterba M. Gersl V. Hrdina R. Ponka P. de Lange JJ. Paulus WJ. Musters RJ. SIH—a novel lipophilic iron chelator—protects H9c2 cardiomyoblasts from oxidative stress-induced mitochondrial injury and cell death. J Mol Cell Cardiol. 2005;39:345–354. PubMed
Simunek T. Klimtova I. Kaplanova J. Mazurova Y. Adamcova M. Sterba M. Hrdina R. Gersl V. Rabbit model for in vivo study of anthracycline-induced heart failure and for the evaluation of protective agents. Eur J Heart Fail. 2004;6:377–387. PubMed
Simunek T. Klimtova I. Kaplanova J. Sterba M. Mazurova Y. Adamcova M. Hrdina R. Gersl V. Ponka P. Study of daunorubicin cardiotoxicity prevention with pyridoxal isonicotinoyl hydrazone in rabbits. Pharmacol Res. 2005;51:223–231. PubMed
Simunek T. Sterba M. Holeckova M. Kaplanova J. Klimtova I. Adamcova M. Gersl V. Hrdina R. Myocardial content of selected elements in experimental anthracycline-induced cardiomyopathy in rabbits. Biometals. 2005;18:163–169. PubMed
Simunek T. Sterba M. Popelova O. Adamcova M. Hrdina R. Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61:154–171. PubMed
Simunek T. Sterba M. Popelova O. Kaiserova H. Adamcova M. Hroch M. Haskova P. Ponka P. Gersl V. Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone. Br J Pharmacol. 2008;155:138–148. PubMed PMC
Simunek T. Sterba M. Popelova O. Kaiserova H. Potacova A. Adamcova M. Mazurova Y. Ponka P. Gersl V. Pyridoxal isonicotinoyl hydrazone (PIH) and its analogs as protectants against anthracycline-induced cardiotoxicity. Hemoglobin. 2008;32:207–215. PubMed
Sirker A. Zhang M. Shah AM. NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol. 2011;106:735–747. PubMed PMC
Sishi BJ. Bester DJ. Wergeland A. Loos B. Jonassen AK. van Rooyen J. Engelbrecht AM. Daunorubicin therapy is associated with upregulation of E3 ubiquitin ligases in the heart. Exp Biol Med (Maywood) 2012;237:219–226. PubMed
Sishi BJ. Bester DJ. Wergeland A. Loos B. Jonassen AK. van Rooyen J. Engelbrecht AM. Daunorubicin therapy is associated with upregulation of E3 ubiquitin ligases in the heart. Exp Biol Med (Maywood) 2012;237:219–226. PubMed
Siveski-Iliskovic N. Hill M. Chow DA. Singal PK. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation. 1995;91:10–15. PubMed
Siveski-Iliskovic N. Kaul N. Singal PK. Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation. 1994;89:2829–2835. PubMed
Solem LE. Henry TR. Wallace KB. Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicol Appl Pharmacol. 1994;129:214–222. PubMed
Speyer JL. Green MD. Dubin N. Blum RH. Wernz JC. Roses D. Sanger J. Muggia FM. Prospective evaluation of cardiotoxicity during a six-hour doxorubicin infusion regimen in women with adenocarcinoma of the breast. Am J Med. 1985;78:555–563. PubMed
Speyer JL. Green MD. Zeleniuch-Jacquotte A. Wernz JC. Rey M. Sanger J. Kramer E. Ferrans V. Hochster H. Meyers M, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol. 1992;10:117–127. PubMed
Steinherz L. Steinherz P. Delayed cardiac toxicity from anthracycline therapy. Pediatrician. 1991;18:49–52. PubMed
Sterba M. Popelova O. Lenco J. Fucikova A. Brcakova E. Mazurova Y. Jirkovsky E. Simunek T. Adamcova M. Micuda S. Stulik J. Gersl V. Proteomic insights into chronic anthracycline cardiotoxicity. J Mol Cell Cardiol. 2011;50:849–862. PubMed
Sterba M. Popelova O. Simunek T. Mazurova Y. Potacova A. Adamcova M. Guncova I. Kaiserova H. Palicka V. Ponka P. Gersl V. Iron chelation-afforded cardioprotection against chronic anthracycline cardiotoxicity: a study of salicylaldehyde isonicotinoyl hydrazone (SIH) Toxicology. 2007;235:150–166. PubMed
Sterba M. Popelova O. Simunek T. Mazurova Y. Potacova A. Adamcova M. Kaiserova H. Ponka P. Gersl V. Cardioprotective effects of a novel iron chelator, pyridoxal 2-chlorobenzoyl hydrazone, in the rabbit model of daunorubicin-induced cardiotoxicity. J Pharmacol Exp Ther. 2006;319:1336–1347. PubMed
Swain SM. Vici P. The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: expert panel review. J Cancer Res Clin Oncol. 2004;130:1–7. PubMed
Swain SM. Whaley FS. Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–2879. PubMed
Swain SM. Whaley FS. Gerber MC. Ewer MS. Bianchine JR. Gams RA. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol. 1997;15:1333–1340. PubMed
Swain SM. Whaley FS. Gerber MC. Weisberg S. York M. Spicer D. Jones SE. Wadler S. Desai A. Vogel C. Speyer J. Mittelman A. Reddy S. Pendergrass K. Velez-Garcia E. Ewer MS. Bianchine JR. Gams RA. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15:1318–1332. PubMed
Tan C. Tasaka H. Yu KP. Murphy ML. Karnofsky DA. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 1967;20:333–353. PubMed
Tanabe K. Ikegami Y. Ishida R. Andoh T. Inhibition of topoisomerase II by antitumor agents bis(2,6-dioxopiperazine) derivatives. Cancer Res. 1991;51:4903–4908. PubMed
Tangpong J. Cole MP. Sultana R. Estus S. Vore M. St Clair W. Ratanachaiyavong S. St Clair DK. Butterfield DA. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem. 2007;100:191–201. PubMed
Tebbi CK. London WB. Friedman D. Villaluna D. De Alarcon PA. Constine LS. Mendenhall NP. Sposto R. Chauvenet A. Schwartz CL. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol. 2007;25:493–500. PubMed
Tesoriere L. Ciaccio M. Valenza M. Bongiorno A. Maresi E. Albiero R. Livrea MA. Effect of vitamin A administration on resistance of rat heart against doxorubicin-induced cardiotoxicity and lethality. J Pharmacol Exp Ther. 1994;269:430–436. PubMed
Thomas C. Vile GF. Winterbourn CC. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction. Biochem Pharmacol. 1993;45:1967–1972. PubMed
Thomas CE. Aust SD. Release of iron from ferritin by cardiotoxic anthracycline antibiotics. Arch Biochem Biophys. 1986;248:684–689. PubMed
Thomas X. Le QH. Fiere D. Anthracycline-related toxicity requiring cardiac transplantation in long-term disease-free survivors with acute promyelocytic leukemia. Ann Hematol. 2002;81:504–507. PubMed
Tokarska-Schlattner M. Wallimann T. Schlattner U. Multiple interference of anthracyclines with mitochondrial creatine kinases: preferential damage of the cardiac isoenzyme and its implications for drug cardiotoxicity. Mol Pharmacol. 2002;61:516–523. PubMed
Tokarska-Schlattner M. Zaugg M. da Silva R. Lucchinetti E. Schaub MC. Wallimann T. Schlattner U. Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol. 2005;289:H37–H47. PubMed
Tokarska-Schlattner M. Zaugg M. Zuppinger C. Wallimann T. Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol. 2006;41:389–405. PubMed
Unverferth DV. Leier CV. Balcerzak SP. Hamlin RL. Usefulness of a free radical scavenger in preventing doxorubicin-induced heart failure in dogs. Am J Cardiol. 1985;56:157–161. PubMed
van Acker FA. Boven E. Kramer K. Haenen GR. Bast A. van der Vijgh WJ. Frederine, a new and promising protector against doxorubicin-induced cardiotoxicity. Clin Cancer Res. 2001;7:1378–1384. PubMed
van Acker SA. Kramer K. Grimbergen JA. van den Berg DJ. van der Vijgh WJ. Bast A. Monohydroxyethylrutoside as protector against chronic doxorubicin-induced cardiotoxicity. Br J Pharmacol. 1995;115:1260–1264. PubMed PMC
van Dalen EC. Caron HN. Dickinson HO. Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011:CD003917. PubMed
van der Kraaij AM. van Eijk HG. Koster JF. Prevention of postischemic cardiac injury by the orally active iron chelator 1,2-dimethyl-3-hydroxy-4-pyridone (L1) and the antioxidant (+)-cyanidanol-3. Circulation. 1989;80:158–164. PubMed
Van Vleet JF. Ferrans VJ. Weirich WE. Cardiac disease induced by chronic adriamycin administration in dogs and an evaluation of vitamin E and selenium as cardioprotectants. Am J Pathol. 1980;99:13–42. PubMed PMC
Vasquez-Vivar J. Martasek P. Hogg N. Masters BS. Pritchard KA., Jr. Kalyanaraman B. Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry. 1997;36:11293–11297. PubMed
Vavrova A. Popelova O. Sterba M. Jirkovsky E. Haskova P. Mertlikova-Kaiserova H. Gersl V. Simunek T. In vivo and in vitro assessment of the role of glutathione antioxidant system in anthracycline-induced cardiotoxicity. Arch Toxicol. 2011;85:525–535. PubMed
Vecchi A. Spreafico F. Sironi M. Cairo M. Garattini S. The immunodepressive and hematotoxic activities of N-trifluoro-acetyl-adriamycin-14-valerate. Eur J Cancer. 1980;16:1289–1296. PubMed
Verhoef V. Bell V. Filppi J. Effect of the cardioprotective agent Adr-529 (Icrf-187) on the antitumor-activity of doxorubicin. Proc Am Assoc Cancer Res. 1988;29:273.
Voest EE. van Acker SA. van der Vijgh WJ. van Asbeck BS. Bast A. Comparison of different iron chelators as protective agents against acute doxorubicin-induced cardiotoxicity. J Mol Cell Cardiol. 1994;26:1179–1185. PubMed
Von Hoff DD. Phase I trials of dexrazoxane and other potential applications for the agent. Semin Oncol. 1998;25:31–36. PubMed
Von Hoff DD. Layard MW. Basa P. Davis HL., Jr. Von Hoff AL. Rozencweig M. Muggia FM. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–717. PubMed
Wallace KB. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol. 2003;93:105–115. PubMed
Wallace KB. Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol. 2007;7:101–107. PubMed
Walter PB. Knutson MD. Paler-Martinez A. Lee S. Xu Y. Viteri FE. Ames BN. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci U S A. 2002;99:2264–2269. PubMed PMC
Wang YM. Madanat FF. Kimball JC. Gleiser CA. Ali MK. Kaufman MW. van Eys J. Effect of vitamin E against adriamycin-induced toxicity in rabbits. Cancer Res. 1980;40:1022–1027. PubMed
Weinstein DM. Mihm MJ. Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther. 2000;294:396–401. PubMed
Wexler LH. Andrich MP. Venzon D. Berg SL. Weaver-McClure L. Chen CC. Dilsizian V. Avila N. Jarosinski P. Balis FM. Poplack DG. Horowitz ME. Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol. 1996;14:362–372. PubMed
Whitnall M. Howard J. Ponka P. Richardson DR. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci U S A. 2006;103:14901–14906. PubMed PMC
Wilson CO. Beale JM. Block JH. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. p. 1010. x.
Wiseman LR. Spencer CM. Dexrazoxane. A review of its use as a cardioprotective agent in patients receiving anthracycline-based chemotherapy. Drugs. 1998;56:385–403. PubMed
Witteles RM. Fowler MB. Telli ML. Chemotherapy-associated cardiotoxicity: how often does it really occur and how can it be prevented? Heart Fail Clin. 2011;7:333–344. PubMed
Wojnowski L. Kulle B. Schirmer M. Schluter G. Schmidt A. Rosenberger A. Vonhof S. Bickeboller H. Toliat MR. Suk EK. Tzvetkov M. Kruger A. Seifert S. Kloess M. Hahn H. Loeffler M. Nurnberg P. Pfreundschuh M. Trumper L. Brockmoller J. Hasenfuss G. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112:3754–3762. PubMed
Wouters KA. Kremer LC. Miller TL. Herman EH. Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131:561–578. PubMed
Wu X. Hasinoff BB. The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anticancer Drugs. 2005;16:93–99. PubMed
Xiong Y. Liu X. Lee CP. Chua BH. Ho YS. Attenuation of doxorubicin-induced contractile and mitochondrial dysfunction in mouse heart by cellular glutathione peroxidase. Free Radic Biol Med. 2006;41:46–55. PubMed
Xu LJ. Jin L. Pan H. Zhang AZ. Wei G. Li PP. Lu WY. Deferiprone protects the isolated atria from cardiotoxicity induced by doxorubicin. Acta Pharmacol Sin. 2006;27:1333–1339. PubMed
Xu MF. Ho S. Qian ZM. Tang PL. Melatonin protects against cardiac toxicity of doxorubicin in rat. J Pineal Res. 2001;31:301–307. PubMed
Yamaoka M. Yamaguchi S. Suzuki T. Okuyama M. Nitobe J. Nakamura N. Mitsui Y. Tomoike H. Apoptosis in rat cardiac myocytes induced by Fas ligand: priming for Fas-mediated apoptosis with doxorubicin. J Mol Cell Cardiol. 2000;32:881–889. PubMed
Yen HC. Oberley TD. Gairola CG. Szweda LI. St Clair DK. Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice. Arch Biochem Biophys. 1999;362:59–66. PubMed
Yen HC. Oberley TD. Vichitbandha S. Ho YS. St Clair DK. The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest. 1996;98:1253–1260. PubMed PMC
Yiakouvaki A. Savovic J. Al-Qenaei A. Dowden J. Pourzand C. Caged-iron chelators a novel approach towards protecting skin cells against UVA-induced necrotic cell death. J Invest Dermatol. 2006;126:2287–2295. PubMed
Yu Y. Kalinowski DS. Kovacevic Z. Siafakas AR. Jansson PJ. Stefani C. Lovejoy DB. Sharpe PC. Bernhardt PV. Richardson DR. Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem. 2009;52:5271–5294. PubMed
Zatloukalova L. Filipsky T. Mladenka P. Semecky V. Macakova K. Holeckova M. Vavrova J. Palicka V. Hrdina R. Dexrazoxane provided moderate protection in a catecholamine model of severe cardiotoxicity. Can J Physiol Pharmacol. 2012;90:473–484. PubMed
Zhang J. Clark JR., Jr. Herman EH. Ferrans VJ. Doxorubicin-induced apoptosis in spontaneously hypertensive rats: differential effects in heart, kidney and intestine, and inhibition by ICRF-187. J Mol Cell Cardiol. 1996;28:1931–1943. PubMed
Zhang J. Herman EH. Ferrans VJ. Effects of ICRF-186 [(L)1,2-bis(3,5-dioxopiperazinyl-1-yl)propane] on the toxicity of doxorubicin in spontaneously hypertensive rats. Toxicology. 1994;92:179–192. PubMed
Zhao Y. McLaughlin D. Robinson E. Harvey AP. Hookham MB. Shah AM. McDermott BJ. Grieve DJ. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res. 2010;70:9287–9297. PubMed PMC
Zhou L. Sung RY. Li K. Pong NH. Xiang P. Shen J. Ng PC. Chen Y. Cardioprotective effect of dexrazoxane in a rat model of myocardial infarction: anti-apoptosis and promoting angiogenesis. Int J Cardiol. 2011;152:196–201. PubMed
Zima T. Tesar V. Crkovska J. Stejskalova A. Platenik J. Teminova J. Nemecek K. Janebova M. Stipek S. ICRF-187 (dexrazoxan) protects from adriamycin-induced nephrotic syndrome in rats. Nephrol Dial Transplant. 1998;13:1975–1979. PubMed
Zuppinger C. Timolati F. Suter TM. Pathophysiology and diagnosis of cancer drug induced cardiomyopathy. Cardiovasc Toxicol. 2007;7:61–66. PubMed
MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response
The Efficacy of Amifostine against Multiple-Dose Doxorubicin-Induced Toxicity in Rats
Comprehensive review of cardiovascular toxicity of drugs and related agents