MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response

. 2022 ; 13 () : 1055911. [epub] 20221121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36479202

Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.

Zobrazit více v PubMed

Adlakha Y. K., Saini N. (2013). miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell. Death Dis. 4, e542. 10.1038/cddis.2013.46 PubMed DOI PMC

Amirinejad R., Rezaei M., Shirvani-Farsani Z. (2020). An update on long intergenic noncoding RNA p21: A regulatory molecule with various significant functions in cancer. Cell. Biosci. 10, 82–89. 10.1186/s13578-020-00445-9 PubMed DOI PMC

Aries A., Paradis P., Lefebvre C., Schwartz R. J., Nemer M. (2004). Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proc. Natl. Acad. Sci. U. S. A. 101, 6975–6980. 10.1073/PNAS.0401833101 PubMed DOI PMC

Badgley M. A., Kremer D. M., Carlo Maurer H., DelGiorno K. E., Lee H. J., Purohit V., et al. (2020). Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89. 10.1126/science.aaw9872 PubMed DOI PMC

Bai T., Liang R., Zhu R., Wang W., Zhou L., Sun Y. (2020). MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J. Cell. Physiol. 235, 5637–5648. 10.1002/JCP.29496 PubMed DOI

Bansal N., Adams M. J., Ganatra S., Colan S. D., Aggarwal S., Steiner R., et al. (2019). Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology. 5, 18–22. 10.1186/S40959-019-0054-5 PubMed DOI PMC

Bian Y., Sun M., Silver M., Ho K. K. L., Marchionni M. A., Caggiano A. O., et al. (2009). Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. Am. J. Physiol. Heart Circ. Physiol. 297, H1974–H1983. 10.1152/ajpheart.01010.2008 PubMed DOI PMC

Boehme K. A., Kulikov R., Blattner C. (2008). p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proc. Natl. Acad. Sci. U. S. A. 105, 7785–7790. 10.1073/pnas.0703423105 PubMed DOI PMC

Bommer G. T., Gerin I., Feng Y., Kaczorowski A. J., Kuick R., Love R. E., et al. (2007). p53-Mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17, 1298–1307. 10.1016/j.cub.2007.06.068 PubMed DOI

Bozulic L., Surucu B., Hynx D., Hemmings B. A. (2008). PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol. Cell. 30, 203–213. 10.1016/j.molcel.2008.02.024 PubMed DOI

Bravo-San Pedro J. M., Kroemer G., Galluzzi L. (2017). Autophagy and mitophagy in cardiovascular disease. Circ. Res. 120, 1812–1824. 10.1161/CIRCRESAHA.117.311082 PubMed DOI

Cao Y., Ruan Y., Shen T., Huang X., Li M., Yu W., et al. (2014). Astragalus polysaccharide suppresses doxorubicin-induced cardiotoxicity by regulating the PI3k/Akt and p38MAPK pathways. Oxid. Med. Cell. Longev. 2014, 674219. 10.1155/2014/674219 PubMed DOI PMC

Cardinale D., Colombo A., Bacchiani G., Tedeschi I., Meroni C. A., Veglia F., et al. (2015). Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131, 1981–1988. 10.1161/CIRCULATIONAHA.114.013777 PubMed DOI

Catanzaro M. P., Weiner A., Kaminaris A., Li C., Cai F., Zhao F., et al. (2019). Doxorubicin-induced cardiomyocyte death is mediated by unchecked mitochondrial fission and mitophagy. FASEB J. 33, 11096–11108. 10.1096/FJ.201802663R PubMed DOI PMC

Chang T. C., Wentzel E. A., Kent O. A., Ramachandran K., Mullendore M., Lee K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell. 26, 745–752. 10.1016/J.MOLCEL.2007.05.010 PubMed DOI PMC

Chen D., Fan Z., Rauh M., Buchfelder M., Eyupoglu I. Y., Savaskan N. (2017a). ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36, 5593–5608. 10.1038/ONC.2017.146 PubMed DOI PMC

Chen D., Rauh M., Buchfelder M., Eyupoglu I. Y., Savaskan N. (2017b). The oxido-metabolic driver ATF4 enhances temozolamide chemo-resistance in human gliomas. Oncotarget 8, 51164–51176. 10.18632/ONCOTARGET.17737 PubMed DOI PMC

Chen F., Hu S. J. (2012). Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. J. Biochem. Mol. Toxicol. 26, 79–86. 10.1002/JBT.20412 PubMed DOI

Chen H., Untiveros G. M., McKee L. A. K., Perez J., Li J., Antin P. B., et al. (2012). Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling Axis by targeting MO25. PLoS One 7, e41574. 10.1371/JOURNAL.PONE.0041574 PubMed DOI PMC

Chen S., Wang J., Zhou Y. (2019a). Long non-coding RNA SNHG1 protects human AC16 cardiomyocytes from doxorubicin toxicity by regulating miR-195/Bcl-2 axis. Biosci. Rep. 39, 20191050. 10.1042/BSR20191050 PubMed DOI PMC

Chen W. Y., Wang D. H., Yen R. C., Luo J., Gu W., Baylin S. B. (2005). Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 123, 437–448. 10.1016/j.cell.2005.08.011 PubMed DOI

Chen Y., Mi Y., Zhang X., Ma Q., Song Y., Zhang L., et al. (2019b). Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J. Exp. Clin. Cancer Res. 38, 402. 10.1186/s13046-019-1413-7 PubMed DOI PMC

Chen Y., Yingjie X. U., Deng Z., Wang Y., Zheng Y., Jiang W., et al. (2021). MicroRNA expression profiling involved in doxorubicin-induced cardiotoxicity using high-throughput deep-sequencing analysis. Oncol. Lett. 22, 560–569. 10.3892/ol.2021.12821 PubMed DOI PMC

Cheng Q., Chen J. (2010). Mechanism of p53 stabilization by ATM after DNA damage. Cell. Cycle 9, 472–478. 10.4161/CC.9.3.10556 PubMed DOI PMC

Christidi E., Brunham L. R. (2021). Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell. Death Dis. 12 (4 12), 339–415. 10.1038/s41419-021-03614-x PubMed DOI PMC

Concepcion C. P., Han Y. C., Mu P., Bonetti C., Yao E., D’Andrea A., et al. (2012). Intact p53-dependent responses in miR-34–deficient mice. PLoS Genet. 8, e1002797. 10.1371/JOURNAL.PGEN.1002797 PubMed DOI PMC

Das J., Ghosh J., Manna P., Sil P. C. (2011). Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem. Pharmacol. 81, 891–909. 10.1016/J.BCP.2011.01.008 PubMed DOI

Deng S., Yan T., Jendrny C., Nemecek A., Vincetic M., Gödtel-Armbrust U., et al. (2014). Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both Topoisomerase II isoforms. BMC Cancer 14, 842. 10.1186/1471-2407-14-842 PubMed DOI PMC

Deng Z., Yao J., Xiao N., Han Y., Wu X., Ci C., et al. (2022). DNA methyltransferase 1 (DNMT1) suppresses mitophagy and aggravates heart failure via the microRNA-152-3p/ETS1/RhoH axis. Lab. Invest. 102, 782–793. 10.1038/s41374-022-00740-8 PubMed DOI

Dhingra R., Guberman M., Rabinovich-Nikitin I., Gerstein J., Margulets V., Gang H., et al. (2020). Impaired NF-κB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy. Cardiovasc. Res. 116, 1161–1174. 10.1093/CVR/CVZ240 PubMed DOI PMC

Dhingra R., Margulets V., Chowdhury S. R., Thliveris J., Jassal D., Fernyhough P., et al. (2014). MicroRNAs in cancer. Annu. Rev. Pathol. Mech. Dis. U. S. A. 111, E5537–E5544. 10.1073/PNAS.1414665111 PubMed DOI PMC

di Leva G., Garofalo M., Croce C. M. (2014). microRNAs in cancer. Annu. Rev. Pathol. 9, 287–314. 10.1146/ANNUREV-PATHOL-012513-104715 PubMed DOI PMC

Dixon S. J., Lemberg K. M., Lamprecht M. R., Skouta R., Zaitsev E. M., Gleason C. E., et al. (2012). Ferroptosis: An iron-dependent form of non-apoptotic cell death. Cell. 149, 1060–1072. 10.1016/J.CELL.2012.03.042 PubMed DOI PMC

Dodson M., Castro-Portuguez R., Zhang D. D. (2019). NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23, 101107. 10.1016/J.REDOX.2019.101107 PubMed DOI PMC

Dragoi A.-M., Fu X., Ivanov S., Zhang P., Sheng L., Wu D., et al. (2005). DNA-PKcs, but not TLR9, is required for activation of Akt by CpG-DNA. EMBO J. 24, 779–789. 10.1038/sj.emboj.7600539 PubMed DOI PMC

Du J., Hang P., Pan Y., Feng B., Zheng Y., Chen T., et al. (2019). Inhibition of miR-23a attenuates doxorubicin-induced mitochondria-dependent cardiomyocyte apoptosis by targeting the PGC-1α/Drp1 pathway. Toxicol. Appl. Pharmacol. 369, 73–81. 10.1016/J.TAAP.2019.02.016 PubMed DOI

Du Q., Zhu B., Zhai Q., Yu B. (2017). Sirt3 attenuates doxorubicin-induced cardiac hypertrophy and mitochondrial dysfunction via suppression of Bnip3. Am. J. Transl. Res. 9, 3360–3373. PubMed PMC

Feng Z., Hu W., de Stanchina E., Teresky A. K., Jin S., Lowe S., et al. (2007). The regulation of AMPK beta1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67, 3043–3053. 10.1158/0008-5472.CAN-06-4149 PubMed DOI

Fiscella M., Zhang H., Fan S., Sakaguchi K., Shen S., Mercer W. E., et al. (1997). Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 94, 6048–6053. 10.1073/pnas.94.12.6048 PubMed DOI PMC

Forterre A., Komuro H., Aminova S., Harada M. (2020). A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers (Basel) 12, 18522–E1921. 10.3390/CANCERS12071852 PubMed DOI PMC

Fujimoto H., Onishi N., Kato N., Takekawa M., Xu X. Z., Kosugi A., et al. (2006). Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell. Death Differ. 13, 1170–1180. 10.1038/sj.cdd.4401801 PubMed DOI

Fukazawa R., Miller T. A., Kuramochi Y., Frantz S., Kim Y. D., Marchionni M. A., et al. (2003). Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J. Mol. Cell. Cardiol. 35, 1473–1479. 10.1016/J.YJMCC.2003.09.012 PubMed DOI

Gammella E., Maccarinelli F., Buratti P., Recalcati S., Cairo G. (2014). The role of iron in anthracycline cardiotoxicity. Front. Pharmacol. 5, 25. 10.3389/FPHAR.2014.00025 PubMed DOI PMC

Gao C., Liu H., Yan F. (2020). Dynamic behavior of p53 driven by delay and a microrna-34a-mediated feedback loop. Int. J. Mol. Sci. 21, E1271. 10.3390/IJMS21041271 PubMed DOI PMC

Gao H., Xian G., Zhong G., Huang B., Liang S., Zeng Q., et al. (2022). Alleviation of doxorubicin-induced cardiomyocyte death through miR-147-y-mediated mitophagy. Biochem. Biophys. Res. Commun. 609, 176–182. 10.1016/j.bbrc.2022.04.013 PubMed DOI

Gao M., Liu Y., Chen Y., Yin C., Chen J. J., Liu S. (2016). miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2. Free Radic. Biol. Med. 92, 39–49. 10.1016/J.FREERADBIOMED.2016.01.005 PubMed DOI

Garzon R., Calin G. A., Croce C. M. (2009). MicroRNAs in cancer. Annu. Rev. Med. 60, 167–179. 10.1146/annurev.med.59.053006.104707 PubMed DOI

Gharanei M., Hussain A., Janneh O., Maddock H. (2013). Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: A mitochondrial division/mitophagy inhibitor. PLoS One 8, e77713. 10.1371/JOURNAL.PONE.0077713 PubMed DOI PMC

Ghigo A., Li M., Hirsch E. (2016). New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim. Biophys. Acta 1863, 1916–1925. 10.1016/J.BBAMCR.2016.01.021 PubMed DOI

Gratia S., Kay L., Potenza L., Seffouh A., Novel-Chate V., Schnebelen C., et al. (2012). Inhibition of AMPK signalling by doxorubicin: At the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc. Res. 95, 290–299. 10.1093/CVR/CVS134 PubMed DOI

Guo J., Guo Q., Fang H., Lei L., Zhang T., Zhao J., et al. (2014). Cardioprotection against doxorubicin by metallothionein Is associated with preservation of mitochondrial biogenesis involving PGC-1α pathway. Eur. J. Pharmacol. 737, 117–124. 10.1016/J.EJPHAR.2014.05.017 PubMed DOI

Guo R., Lin J., Xu W., Shen N., Mo L., Zhang C., et al. (2013). Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. Int. J. Mol. Med. 31, 644–650. 10.3892/ijmm.2013.1246 PubMed DOI

Han D., Wang Y., Wang Y., Dai X., Zhou T., Chen J., et al. (2020). The tumor-suppressive human circular RNA CircITCH sponges miR-330-5p to ameliorate doxorubicin-induced cardiotoxicity through upregulating SIRT6, survivin, and SERCA2a. Circ. Res. 127, E108–E125. 10.1161/CIRCRESAHA.119.316061 PubMed DOI

He L., He X., Lim L. P., de Stanchina E., Xuan Z., Liang Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134. 10.1038/NATURE05939 PubMed DOI PMC

Hermeking H. (2012). MicroRNAs in the p53 network: Micromanagement of tumour suppression. Nat. Rev. Cancer 12 (9 12), 613–626. 10.1038/nrc3318 PubMed DOI

Holmgren G., Synnergren J., Andersson C. X., Lindahl A., Sartipy P. (2016). MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicol. Vitro 34, 26–34. 10.1016/J.TIV.2016.03.009 PubMed DOI

Hong D. S., Kang Y. K., Borad M., Sachdev J., Ejadi S., Lim H. Y., et al. (2020). Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 122, 1630–1637. 10.1038/S41416-020-0802-1 PubMed DOI PMC

Horenstein M. S., vander Heide R. S., L’Ecuyer T. J. (2000). Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Mol. Genet. Metab. 71, 436–444. 10.1006/MGME.2000.3043 PubMed DOI

Horie T., Ono K., Nishi H., Nagao K., Kinoshita M., Watanabe S., et al. (2010). Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc. Res. 87, 656–664. 10.1093/CVR/CVQ148 PubMed DOI PMC

Hoshino A., Mita Y., Okawa Y., Ariyoshi M., Iwai-Kanai E., Ueyama T., et al. (2013). Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308. 10.1038/ncomms3308 PubMed DOI

Huang J., Wu R., Chen L., Yang Z., Yan D., Li M. (2022). Understanding anthracycline cardiotoxicity from mitochondrial aspect. Front. Pharmacol. 13, 291. 10.3389/fphar.2022.811406 PubMed DOI PMC

Huarte M., Guttman M., Feldser D., Garber M., Koziol M. J., Kenzelmann-Broz D., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142, 409–419. 10.1016/J.CELL.2010.06.040 PubMed DOI PMC

Ichikawa Y., Ghanefar M., Bayeva M., Wu R., Khechaduri A., Naga Prasad S. v., et al. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Invest. 124, 617–630. 10.1172/JCI72931 PubMed DOI PMC

Issler M. V. C., Mombach J. C. M. (2017). MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS One 12, e0185794. 10.1371/journal.pone.0185794 PubMed DOI PMC

Jackson S. P., Bartek J. (2009). The DNA-damage response in human biology and disease. Nature 461, 1071–1078. 10.1038/nature08467 PubMed DOI PMC

Jiang L., Kon N., Li T., Wang S. J., Su T., Hibshoosh H., et al. (2015). Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62. 10.1038/nature14344 PubMed DOI PMC

Jirkovská A., Karabanovich G., Kubeš J., Skalická V., Melnikova I., Korábečný J., et al. (2021). Structure-activity relationship study of dexrazoxane analogues reveals ICRF-193 as the most potent bisdioxopiperazine against anthracycline toxicity to cardiomyocytes due to its strong topoisomerase IIβ interactions. J. Med. Chem. 64, 3997–4019. 10.1021/acs.jmedchem.0c02157 PubMed DOI

Jirkovský E., Jirkovská A., Bavlovič-Piskáčková H., Skalická V., Pokorná Z., Karabanovich G., et al. (2021). Clinically translatable prevention of anthracycline cardiotoxicity by dexrazoxane is mediated by topoisomerase II beta and not metal chelation. Circ. Heart Fail. 14, e008209. 10.1161/CIRCHEARTFAILURE.120.008209 PubMed DOI

Kaiserová H., den Hartog G. J. M., Šimůnek T., Schröterová L., Kvasničková E., Bast A. (2006). Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin. Br. J. Pharmacol. 149, 920–930. 10.1038/SJ.BJP.0706930 PubMed DOI PMC

Kalfert D., Ludvikova M., Pesta M., Ludvik J., Dostalova L., Kholová I. (2020). Multifunctional roles of miR-34a in cancer: A review with the emphasis on head and neck squamous cell carcinoma and thyroid cancer with clinical implications. Diagnostics 10, 563. 10.3390/diagnostics10080563 PubMed DOI PMC

Kaller M., Liffers S. T., Oeljeklaus S., Kuhlmann K., Röh S., Hoffmann R., et al. (2011). Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol. Cell. Proteomics 10, M111.010462. 10.1074/MCP.M111.010462 PubMed DOI PMC

Kalyanaraman B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 29, 101394. 10.1016/J.REDOX.2019.101394 PubMed DOI PMC

Kang C., Xu Q., Martin T. D., Li M. Z., Demaria M., Aron L., et al. (2015). The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612. 10.1126/science.aaa5612 PubMed DOI PMC

Kang Y., Shu X. H., Sun M. M., Pan C. Z., Ge J. B. (2013). Two-dimensional speckle tracking echocardiography in early detection and prediction of cardiotoxocity during epirubicine based chemotherapy. Eur. Heart J. 34, P2974. 10.1093/EURHEARTJ/EHT309.P2974 PubMed DOI

Khadka D., Kim H.-J., Oh G.-S., Shen A., Lee S., Lee S.-B., et al. (2018). Augmentation of NAD+ levels by enzymatic action of NAD(P)H quinone oxidoreductase 1 attenuates adriamycin-induced cardiac dysfunction in mice. J. Mol. Cell. Cardiol. 124, 45–57. 10.1016/j.yjmcc.2018.10.001 PubMed DOI

Kim Y., Ma A. G., Kitta K., Fitch S. N., Ikeda T., Ihara Y., et al. (2003). Anthracycline-induced suppression of GATA-4 transcription factor: Implication in the regulation of cardiac myocyte apoptosis. Mol. Pharmacol. 63, 368–377. 10.1124/MOL.63.2.368 PubMed DOI

Kindrat I., Tryndyak V., Conti A., Shpyleva S., Mudalige T. K., Kobets T., et al. (2016). MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget 7, 1276–1287. 10.18632/ONCOTARGET.6004 PubMed DOI PMC

Kobayashi S., Volden P., Timm D., Mao K., Xu X., Liang Q. (2010). Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J. Biol. Chem. 285, 793–804. 10.1074/JBC.M109.070037 PubMed DOI PMC

Koleini N., Kardami E. (2017). Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget 8, 46663–46680. 10.18632/ONCOTARGET.16944 PubMed DOI PMC

Kollárová-Brázdová P., Jirkovská A., Karabanovich G., Pokorná Z., Piskáčková H. B., Jirkovský E., et al. (2020). Investigation of structure-activity relationships of dexrazoxane analogs reveals topoisomerase IIβ interaction as a prerequisite for effective protection against anthracycline cardiotoxicity. J. Pharmacol. Exp. Ther. 373, 402–415. 10.1124/JPET.119.264580 PubMed DOI

Kurz E. U., Douglas P., Lees-Miller S. P. (2004). Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species *. J. Biol. Chem. 279, 53272–53281. 10.1074/JBC.M406879200 PubMed DOI

Lai L., Chen J., Wang N., Zhu G., Duan X., Ling F. (2017). MiRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci. 169, 69–75. 10.1016/J.LFS.2016.09.006 PubMed DOI

Lakin N. D., Jackson S. P. (1999). Regulation of p53 in response to DNA damage. Oncogene 18, 7644–7655. 10.1038/sj.onc.1203015 PubMed DOI

L’Ecuyer T., Sanjeev S., Thomas R., Novak R., Das L., Campbell W., et al. (2006). DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am. J. Physiol. Heart Circ. Physiol. 291, H1273–H1280. 10.1152/ajpheart.00738.2005 PubMed DOI

Lee E. R., Kim J. Y., Kang Y. J., Ahn J. Y., Kim J. H., Kim B. W., et al. (2006). Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochim. Biophys. Acta 1763, 958–968. 10.1016/J.BBAMCR.2006.06.006 PubMed DOI

Lee Y. S., Dutta A. (2009). MicroRNAs in cancer. Annu. Rev. Pathol. 4, 199–227. 10.1146/ANNUREV.PATHOL.4.110807.092222 PubMed DOI PMC

Lenčová-Popelová O., Jirkovský E., Mazurová Y., Lenčo J., Adamcová M., Šimůnek T., et al. (2014). Molecular remodeling of left and right ventricular myocardium in chronic anthracycline cardiotoxicity and post-treatment follow up. PLoS One 9, e96055. 10.1371/JOURNAL.PONE.0096055 PubMed DOI PMC

Lev Bar-Or R., Maya R., Segel L. A., Alon U., Levine A. J., Oren M. (2000). Generation of oscillations by the p53-mdm2 feedback loop: A theoretical and experimental study. Proc. Natl. Acad. Sci. U. S. A. 97, 11250–11255. 10.1073/pnas.210171597 PubMed DOI PMC

Lezina L., Purmessur N., Antonov A., Ivanova T., Karpova E., Krishan K., et al. (2013). miR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell. Death Dis. 4, e953. 10.1038/cddis.2013.483 PubMed DOI PMC

Li D., Yang Y., Wang S., He X., Liu M., Bai B., et al. (2021). Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol. 46, 102089. 10.1016/J.REDOX.2021.102089 PubMed DOI PMC

Li J., Aung L. H. H., Long B., Qin D., An S., Li P. (2015). miR-23a binds to p53 and enhances its association with miR-128 promoter. Sci. Rep. 5 (1 5), 16422–16513. 10.1038/srep16422 PubMed DOI PMC

Li J., Cao F., Yin H., Huang Z., Lin Z., Mao N., et al. (2020a). Ferroptosis: Past, present and future. Cell. Death Dis. 11 (2 11), 88–13. 10.1038/s41419-020-2298-2 PubMed DOI PMC

Li J., Donath S., Li Y., Qin D., Prabhakar B. S., Li P. (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 6, e1000795. 10.1371/JOURNAL.PGEN.1000795 PubMed DOI PMC

Li J., Li Y., Jiao J., Wang J., Li Y., Qin D., et al. (2014a). Mitofusin 1 is negatively regulated by MicroRNA 140 in cardiomyocyte apoptosis. Mol. Cell. Biol. 34, 1788–1799. 10.1128/MCB.00774-13 PubMed DOI PMC

Li J., Wan W., Chen T., Tong S., Jiang X., Liu W. (2019a). MiR-451 silencing inhibited doxorubicin exposure-induced cardiotoxicity in mice. Biomed. Res. Int. 2019, 1528278. 10.1155/2019/1528278 PubMed DOI PMC

Li J., Wang P. Y., Long N. A., Zhuang J., Springer D. A., Zou J., et al. (2019b). P53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc. Natl. Acad. Sci. U. S. A. 116, 19626–19634. 10.1073/pnas.1904979116 PubMed DOI PMC

Li L. L., Li L. L., Wei L., Wei L., Wei L., Zhang N., et al. (2020b). Levosimendan protects against doxorubicin-induced cardiotoxicity by regulating the PTEN/akt pathway. Biomed. Res. Int. 2020, 8593617. 10.1155/2020/8593617 PubMed DOI PMC

Li S., Wang W., Niu T., Wang H., Li B., Shao L., et al. (2014b). Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid. Med. Cell. Longev. 2014, 748524. 10.1155/2014/748524 PubMed DOI PMC

Li W., Wang X., Liu T., Zhang Q., Cao J., Jiang Y., et al. (2022). Harpagoside protects against doxorubicin-induced cardiotoxicity via P53-parkin-mediated mitophagy. Front. Cell. Dev. Biol. 10, 813370. 10.3389/fcell.2022.813370 PubMed DOI PMC

Li X. Q., Liu Y. K., Yi J., Dong J. S., Zhang P. P., Wan L., et al. (2020c). MicroRNA-143 increases oxidative stress and myocardial cell apoptosis in a mouse model of doxorubicin-induced cardiac toxicity. Med. Sci. Monit. 26, 9203944–e920401. 10.12659/MSM.920394 PubMed DOI PMC

Li Z., Li H., Liu B., Luo J., Qin X., Gong M., et al. (2020d). Inhibition of MiR-25 attenuates doxorubicin-induced apoptosis, reactive oxygen species production and DNA damage by targeting pten. Int. J. Med. Sci. 17, 1415–1427. 10.7150/IJMS.41980 PubMed DOI PMC

Liao Z.-Q., Jiang Y.-N., Su Z.-L., Bi H.-L., Li J.-T., Li C.-L., et al. (2022). Rutaecarpine inhibits doxorubicin-induced oxidative stress and apoptosis by activating AKT signaling pathway. Front. Cardiovasc. Med. 0, 809689. 10.3389/FCVM.2021.809689 PubMed DOI PMC

Lipshultz S. E., Alvarez J. A., Scully R. E. (2008). Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 94, 525–533. 10.1136/HRT.2007.136093 PubMed DOI

Liu J., Zhang C., Wang J., Hu W., Feng Z. (2020a). The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int. J. Mol. Sci. 21, 83877–E8419. 10.3390/IJMS21218387 PubMed DOI PMC

Liu L., Dai X., Yin S., Liu P., Hill E. G., Wei W., et al. (2022). DNA-PK promotes activation of the survival kinase AKT in response to DNA damage through an mTORC2-ECT2 pathway. Sci. Signal. 15, eabh2290. 10.1126/scisignal.abh2290 PubMed DOI PMC

Liu T. H., Chen W. H., Chen X. D., Liang Q. E., Tao W. C., Jin Z., et al. (2020b). The effects of inhibition of MicroRNA-375 in a mouse model of doxorubicin-induced cardiac toxicity. Med. Sci. Monit. 26, 9205577–e920561. 10.12659/MSM.920557 PubMed DOI PMC

Liu Y., Gu W. (2022). p53 in ferroptosis regulation: the new weapon for the old guardian. Cell. Death Differ. 29 (5 29), 895–910. 10.1038/s41418-022-00943-y PubMed DOI PMC

Lu J., Xu F., Lu H. (2020). LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 260, 118305. 10.1016/J.LFS.2020.118305 PubMed DOI

Lyu Y. L., Kerrigan J. E., Lin C.-P., Azarova A. M., Tsai Y.-C., Ban Y., et al. (2007). Topoisomerase IIbeta mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67, 8839–8846. 10.1158/0008-5472.CAN-07-1649 PubMed DOI

Marinello J., Delcuratolo M., Capranico G. (2018). Anthracyclines as topoisomerase II poisons: From early studies to new perspectives. Int. J. Mol. Sci. 19, E3480. 10.3390/IJMS19113480 PubMed DOI PMC

Maruyama S., Shibata R., Ohashi K., Ohashi T., Daida H., Walsh K., et al. (2011). Adiponectin ameliorates doxorubicin-induced cardiotoxicity through akt protein-dependent mechanism. J. Biol. Chem. 286, 32790–32800. 10.1074/JBC.M111.245985 PubMed DOI PMC

Matsushima S., Sadoshima J. (2015). The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol. 309, H1375–H1389. 10.1152/AJPHEART.00053.2015 PubMed DOI PMC

McSweeney K. M., Bozza W. P., Alterovitz W. L., Zhang B. (2019). Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell. Death Discov. 5 (1 5), 102–111. 10.1038/s41420-019-0182-6 PubMed DOI PMC

Mei Z., Zhang X., Yi J., Huang J., He J., Tao Y. (2016). Sirtuins in metabolism, DNA repair and cancer. J. Exp. Clin. Cancer Res. 35, 182. 10.1186/S13046-016-0461-5 PubMed DOI PMC

Meng J., Xu C. (2022). MicroRNA-495-3p diminishes doxorubicin-induced cardiotoxicity through activating AKT. J. Cell. Mol. Med. 26, 2076–2088. 10.1111/JCMM.17230 PubMed DOI PMC

Meng L., Lin H., Zhang J., Lin N., Sun Z., Gao F., et al. (2019). Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. J. Mol. Cell. Cardiol. 136, 15–26. 10.1016/J.YJMCC.2019.08.009 PubMed DOI

Menon A. V., Kim J. (2022). Iron promotes cardiac doxorubicin retention and toxicity through downregulation of the mitochondrial exporter ABCB8. Front. Pharmacol. 13, 322. 10.3389/fphar.2022.817951 PubMed DOI PMC

Mihalas G. I., Simon Z., Balea G., Popa E. (2000). Possible oscillatory behavior in P53–MDM2 interaction computer simulation. J. Biol. Syst. 08, 21–29. 10.1142/S0218339000000031 DOI

Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185–229. 10.1124/PR.56.2.6 PubMed DOI

Minotti G., Ronchi R., Salvatorelli E., Menna P., Cairo G. (2001). Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: Evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Res. 61, 8422–8428. PubMed

Mitry M. A., Edwards J. G. (2016). Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int. J. Cardiol. Heart Vasc. 10, 17–24. 10.1016/J.IJCHA.2015.11.004 PubMed DOI PMC

Navarro F., Lieberman J. (2015). miR-34 and p53: New insights into a complex functional relationship. PLoS One 10, e0132767. 10.1371/JOURNAL.PONE.0132767 PubMed DOI PMC

Novák B., Tyson J. J. (2008). Design principles of biochemical oscillators. Nat. Rev. Mol. Cell. Biol. 9 (12 9), 981–991. 10.1038/nrm2530 PubMed DOI PMC

Olivero C. E., Martínez-Terroba E., Zimmer J., Liao C., Tesfaye E., Hooshdaran N., et al. (2020). p53 activates the long noncoding RNA Pvt1b to inhibit myc and suppress tumorigenesis. Mol. Cell. 77, 761–774. e8. 10.1016/j.molcel.2019.12.014 PubMed DOI PMC

Osataphan N., Phrommintikul A., Chattipakorn S. C., Chattipakorn N. (2020). Effects of doxorubicin‐induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. J. Cell. Mol. Med. 24, 6534–6557. 10.1111/JCMM.15305 PubMed DOI PMC

Pan J. A., Tang Y., Yu J. Y., Zhang H., Zhang J. F., Wang C. Q., et al. (2019). miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicin-induced cardiotoxicity. Cell. Death Dis. 10 (9 10), 668–715. 10.1038/s41419-019-1901-x PubMed DOI PMC

Park A. M., Nagase H., Liu L., Vinod Kumar S., Szwergold N., Wong C. M., et al. (2011). Mechanism of anthracycline-mediated down-regulation of GATA4 in the heart. Cardiovasc. Res. 90, 97–104. 10.1093/CVR/CVQ361 PubMed DOI PMC

Peng L., Qian M., Liu Z., Tang X., Sun J., Jiang Y., et al. (2020). Deacetylase-independent function of SIRT6 couples GATA4 transcription factor and epigenetic activation against cardiomyocyte apoptosis. Nucleic Acids Res. 48, 4992–5005. 10.1093/NAR/GKAA214 PubMed DOI PMC

Pereira J. D., Tosatti J. A. G., Simões R., Luizon M. R., Gomes K. B., Alves M. T. (2020). microRNAs associated to anthracycline-induced cardiotoxicity in women with breast cancer: A systematic review and pathway analysis. Biomed. Pharmacother. 131, 110709. 10.1016/J.BIOPHA.2020.110709 PubMed DOI

Piegari E., Angelis A., Cappetta D., Russo R., Esposito G., Costantino S., et al. (2013). Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Res. Cardiol. 108, 334. 10.1007/s00395-013-0334-4 PubMed DOI

Piegari E., Cozzolino A., Ciuffreda L. P., Cappetta D., de Angelis A., Urbanek K., et al. (2020). Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Sci. Rep. 10 (1 10), 12250–12312. 10.1038/s41598-020-69038-3 PubMed DOI PMC

Piegari E., Russo R., Cappetta D., Esposito G., Urbanek K., Dell’Aversana C., et al. (2016). MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget 7, 62312–62326. 10.18632/ONCOTARGET.11468 PubMed DOI PMC

Pillai J. B., Isbatan A., Imai S., Gupta M. P. (2005). Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 280, 43121–43130. 10.1074/jbc.M506162200 PubMed DOI

Pointon A. v., Walker T. M., Phillips K. M., Luo J., Riley J., Zhang S. D., et al. (2010). Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One 5, 127333–e12817. 10.1371/JOURNAL.PONE.0012733 PubMed DOI PMC

Poltorack C. D., Dixon S. J. (2022). Understanding the role of cysteine in ferroptosis: Progress & paradoxes. FEBS J. 289, 374–385. 10.1111/FEBS.15842 PubMed DOI PMC

Pommier Y., Leo E., Zhang H., Marchand C. (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433. 10.1016/J.CHEMBIOL.2010.04.012 PubMed DOI PMC

Pudil R., Mueller C., Čelutkienė J., Henriksen P. A., Lenihan D., Dent S., et al. (2020). Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: A position statement from the cardio-oncology study group of the heart failure association and the cardio-oncology council of the European society of cardiology. Eur. J. Heart Fail. 22, 1966–1983. 10.1002/EJHF.2017 PubMed DOI

Purvis J. E., Karhohs K. W., Mock C., Batchelor E., Loewer A., Lahav G. (2012). p53 dynamics control cell fate. Science 336, 1440–1444. 10.1126/science.1218351 PubMed DOI PMC

Raver-Shapira N., Marciano E., Meiri E., Spector Y., Rosenfeld N., Moskovits N., et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell. 26, 731–743. 10.1016/j.molcel.2007.05.017 PubMed DOI

Ren Y., Sun C., Sun Y., Tan H., Wu Y., Cui B., et al. (2009). PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vasc. Pharmacol. 51, 169–174. 10.1016/J.VPH.2009.06.004 PubMed DOI

Renu K., Abilash V. G., Tirupathi T. P., Arunachalam S. (2018). Molecular mechanism of doxorubicin-induced cardiomyopathy – an update. Eur. J. Pharmacol. 818, 241–253. 10.1016/J.EJPHAR.2017.10.043 PubMed DOI

Roca-Alonso L., Castellano L., Mills A., Dabrowska A. F., Sikkel M. B., Pellegrino L., et al. (2015). Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell. Death Dis. 6 (5 6), e1754. 10.1038/cddis.2015.89 PubMed DOI PMC

Roe N. D., Xu X., Kandadi M. R., Hu N., Pang J., Weiser-Evans M. C. M., et al. (2015). Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1–AMPK signaling and autophagy. Biochim. Biophys. Acta 1852, 290–298. 10.1016/J.BBADIS.2014.09.002 PubMed DOI PMC

Ruan Y., Dong C., Patel J., Duan C., Wang X., Wu X., et al. (2015). SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cell. Physiol. biochem. 35, 1116–1124. 10.1159/000373937 PubMed DOI

Ruggeri C., Gioffré S., Achilli F., Colombo G. I., D’Alessandra Y. (2018). Role of microRNAs in doxorubicin-induced cardiotoxicity: An overview of preclinical models and cancer patients. Heart fail. Rev. 23, 109–122. 10.1007/s10741-017-9653-0 PubMed DOI PMC

Russo M., della Sala A., Tocchetti C. G., Porporato P. E., Ghigo A. (2021). Metabolic aspects of anthracycline cardiotoxicity. Curr. Treat. Options Oncol. 22, 18. 10.1007/S11864-020-00812-1 PubMed DOI PMC

Sahu R., Dua T. K., Das S., de Feo V., Dewanjee S. (2019). Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem. Toxicol. 125, 503–519. 10.1016/J.FCT.2019.01.034 PubMed DOI

Saito T., Sadoshima J. (2015). Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ. Res. 116, 1477–1490. 10.1161/CIRCRESAHA.116.303790 PubMed DOI PMC

Salzman D. W., Nakamura K., Nallur S., Dookwah M. T., Metheetrairut C., Slack F. J., et al. (2016). miR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nat. Commun. 7, 10954. 10.1038/NCOMMS10954 PubMed DOI PMC

Samant S. A., Zhang H. J., Hong Z., Pillai V. B., Sundaresan N. R., Wolfgeher D., et al. (2014). SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell. Biol. 34, 807–819. 10.1128/MCB.01483-13 PubMed DOI PMC

Sardão V. A., Oliveira P. J., Holy J., Oliveira C. R., Wallace K. B. (2009). Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother. Pharmacol. 64, 811–827. 10.1007/s00280-009-0932-x PubMed DOI

Shinlapawittayatorn K., Chattipakorn S. C., Chattipakorn N. (2022). The effects of doxorubicin on cardiac calcium homeostasis and contractile function. J. Cardiol. 80, 125–132. 10.1016/J.JJCC.2022.01.001 PubMed DOI

Shreeram S., Demidov O. N., Hee W. K., Yamaguchi H., Onishi N., Kek C., et al. (2006). Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell. 23, 757–764. 10.1016/j.molcel.2006.07.010 PubMed DOI

Šimůnek T., Štěrba M., Popelová O., Adamcová M., Hrdina R., Gerši V. (2009). Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep. 61, 154–171. 10.1016/S1734-1140(09)70018-0 PubMed DOI

Skála M., Hanousková B., Skálová L., Matoušková P. (2019). MicroRNAs in the diagnosis and prevention of drug-induced cardiotoxicity. Arch. Toxicol. 93, 1–9. 10.1007/s00204-018-2356-z PubMed DOI

Štěrba M., Popelová O., Lenčo J., Fučíková A., Brčáková E., Mazurová Y., et al. (2011). Proteomic insights into chronic anthracycline cardiotoxicity. J. Mol. Cell. Cardiol. 50, 849–862. 10.1016/J.YJMCC.2011.01.018 PubMed DOI

Štěrba M., Popelová O., Vávrová A., Jirkovský E., Kovaříková P., Geršl V., et al. (2013). Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid. Redox Signal. 18, 899–929. 10.1089/ARS.2012.4795 PubMed DOI PMC

Su Q., Xu Y., Cai R., Dai R., Yang X., Liu Y., et al. (2021). miR-146a inhibits mitochondrial dysfunction and myocardial infarction by targeting cyclophilin D. Mol. Ther. Nucleic Acids 23, 1258–1271. 10.1016/J.OMTN.2021.01.034 PubMed DOI PMC

Sumneang N., Siri-Angkul N., Kumfu S., Chattipakorn S. C., Chattipakorn N. (2020). The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch. Biochem. Biophys. 680, 108241. 10.1016/J.ABB.2019.108241 PubMed DOI

Sun Z., Lu W., Lin N., Lin H., Zhang J., Ni T., et al. (2020). Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem. Pharmacol. 175, 113888. 10.1016/J.BCP.2020.113888 PubMed DOI

Tadokoro T., Ikeda M., Ide T., Deguchi H., Ikeda S., Okabe K., et al. (2020). Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 5, 132747. 10.1172/JCI.INSIGHT.132747 PubMed DOI PMC

Tang B. L. (2016). Sirt1 and the mitochondria. Mol. Cells 39, 87–95. 10.14348/MOLCELLS.2016.2318 PubMed DOI PMC

Tang H., Tao A., Song J., Liu Q., Wang H., Rui T. (2017). Doxorubicin-induced cardiomyocyte apoptosis: Role of mitofusin 2. Int. J. Biochem. Cell. Biol. 88, 55–59. 10.1016/j.biocel.2017.05.006 PubMed DOI

Taniyama Y., Walsh K. (2002). Elevated myocardial akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. J. Mol. Cell. Cardiol. 34, 1241–1247. 10.1006/JMCC.2002.2068 PubMed DOI

Timm K. N., Tyler D. J. (2020). The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovasc. Drugs Ther. 34, 255–269. 10.1007/S10557-020-06941-X PubMed DOI PMC

Tong Z., Jiang B., Wu Y., Liu Y., Li Y., Gao M., et al. (2015). MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int. J. Mol. Sci. 16, 14511–14525. 10.3390/IJMS160714511 PubMed DOI PMC

Tony H., Yu K., Qiutang Z. (2015). MicroRNA-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxid. Med. Cell. Longev. 2015, 597032. 10.1155/2015/597032 PubMed DOI PMC

Tsuchiya N., Izumiya M., Ogata-Kawata H., Okamoto K., Fujiwara Y., Nakai M., et al. (2011). Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res. 71, 4628–4639. 10.1158/0008-5472.CAN-10-2475 PubMed DOI PMC

Vacchi-Suzzi C., Bauer Y., Berridge B. R., Bongiovanni S., Gerrish K., Hamadeh H. K., et al. (2012). Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One 7, 40395. 10.1371/JOURNAL.PONE.0040395 PubMed DOI PMC

Vejpongsa P., Yeh E. T. H. (2014). Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin. Pharmacol. Ther. 95, 45–52. 10.1038/CLPT.2013.201 PubMed DOI

Ventura A., Jacks T. (2009). MicroRNAs and cancer: Short RNAs go a long way. Cell. 136, 586–591. 10.1016/J.CELL.2009.02.005 PubMed DOI PMC

Wales M. M., Biel M. A., Deiry W. el, Nelkin B. D., Issa J.-P., Cavenee W. K., et al. (1995). p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat. Med. 1, 570–577. 10.1038/nm0695-570 PubMed DOI

Wallace K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc. Toxicol. 7, 101–107. 10.1007/s12012-007-0008-2 PubMed DOI

Wallace K. B., Sardão V. A., Oliveira P. J. (2020). Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ. Res. 126, 926–941. 10.1161/CIRCRESAHA.119.314681 PubMed DOI PMC

Wan Q., Xu T., Ding W., Zhang X., Ji X., Yu T., et al. (2019). miR-499-5p attenuates mitochondrial fission and cell apoptosis via p21 in doxorubicin cardiotoxicity. Front. Genet. 10, 734. 10.3389/fgene.2018.00734 PubMed DOI PMC

Wang J., Zhang J., Xiao M., Wang S., Wang (b), J., Guo Y., et al. (2021). Molecular mechanisms of doxorubicin-induced cardiotoxicity: Novel roles of sirtuin 1-mediated signaling pathways. Cell. Mol. Life Sci. 78 (7 78), 3105–3125. 10.1007/S00018-020-03729-Y PubMed DOI PMC

Wang J., Tang Y., Zhang J., Wang J., Xiao M., Lu G., et al. (2022). Cardiac SIRT1 ameliorates doxorubicin-induced cardiotoxicity by targeting sestrin 2. Redox Biol. 52, 102310. 10.1016/J.REDOX.2022.102310 PubMed DOI PMC

Wang J. X., Jiao J. Q., Li Q., Long B., Wang K., Liu J. P., et al. (2010). miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 17 (1 17), 71–78. 10.1038/nm.2282 PubMed DOI

Wang J. X., Zhang X. J., Feng C., Sun T., Wang K., Wang Y., et al. (2015). MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell. Death Dis. 6, e1677. 10.1038/CDDIS.2015.41 PubMed DOI PMC

Wang M., Mao C., Ouyang L., Liu Y., Lai W., Liu N., et al. (2019). Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell. Death Differ. 26, 2329–2343. 10.1038/S41418-019-0304-Y PubMed DOI PMC

Wang R., Xu Y., Niu X., Fang Y., Guo D., Chen J., et al. (2021). MiR-22 inhibition alleviates cardiac dysfunction in doxorubicin-induced cardiomyopathy by targeting the sirt1/PGC-1α pathway. Front. Physiol. 12, 289. 10.3389/fphys.2021.646903 PubMed DOI PMC

Wang S., Song P., Zou M. H. (2012). Inhibition of AMP-activated protein kinase α (AMPKα) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: Role of p53 and SIRT1. J. Biol. Chem. 287, 8001–8012. 10.1074/JBC.M111.315812 PubMed DOI PMC

Wang S., Wang Y., Zhang Z., Liu Q., Gu J. (2017). Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell. Death Dis. 8 (8 8), e3018. 10.1038/cddis.2017.410 PubMed DOI PMC

Wang V., Wu W. (2012). MicroRNA-based therapeutics for cancer. BioDrugs 23, 15–23. 10.2165/00063030-200923010-00002 PubMed DOI

Wu M., Ye H., Tang Z., Shao C., Lu G., Chen B., et al. (2017). p53 dynamics orchestrates with binding affinity to target genes for cell fate decision. Cell. Death Dis. 8 (10 8), e3130. 10.1038/cddis.2017.492 PubMed DOI PMC

Wu S., Lan J., Li L., Wang X., Tong M., Fu L., et al. (2021). Sirt6 protects cardiomyocytes against doxorubicin-induced cardiotoxicity by inhibiting P53/Fas-dependent cell death and augmenting endogenous antioxidant defense mechanisms. Cell. Biol. Toxicol. 2021, 1–22. 10.1007/s10565-021-09649-2 PubMed DOI

Wu Y. Z., Zhang L., Wu Z. X., Shan T. T., Xiong C. (2019). Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid. Med. Cell. Longev. 2019, 2150394. 10.1155/2019/2150394 PubMed DOI PMC

Xia W., Chang B., Li L., Hu T., Ye J., Chen H., et al. (2021). MicroRNA therapy confers anti-senescent effects on doxorubicin-related cardiotoxicity by intracellular and paracrine signaling. Aging (Albany NY) 13, 25256–25270. 10.18632/AGING.203743 PubMed DOI PMC

Xu C., Liu C. H., Zhang D. L. (2020). MicroRNA-22 inhibition prevents doxorubicin-induced cardiotoxicity via upregulating SIRT1. Biochem. Biophys. Res. Commun. 521, 485–491. 10.1016/J.BBRC.2019.10.140 PubMed DOI

Xu X., Persson H. L., Richardson D. R. (2005). Molecular Pharmacology of the interaction of anthracyclines with iron. Mol. Pharmacol. 68, 261–271. 10.1124/MOL.105.013383 PubMed DOI

Yamakuchi M., Ferlito M., Lowenstein C. J. (2008). miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. U. S. A. 105, 13421–13426. 10.1073/PNAS.0801613105 PubMed DOI PMC

Yang Q., Yang K., Li A. (2014). microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion- induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt- dependent mechanism. Mol. Med. Rep. 9, 2213–2220. 10.3892/mmr.2014.2068 PubMed DOI

Yin J., Guo J., Zhang Q., Cui L., Zhang L., Zhang T., et al. (2018). Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicol. Vitro 51, 1–10. 10.1016/j.tiv.2018.05.001 PubMed DOI

Yoshida M., Shiojima I., Ikeda H., Komuro I. (2009). Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J. Mol. Cell. Cardiol. 47, 698–705. 10.1016/J.YJMCC.2009.07.024 PubMed DOI

Yu X., Ruan Y., Shen T., Qiu Q., Yan M., Sun S., et al. (2020). Dexrazoxane protects cardiomyocyte from doxorubicin-induced apoptosis by modulating miR-17-5p. Biomed. Res. Int. 2020, 5107193. 10.1155/2020/5107193 PubMed DOI PMC

Zhang B., Pan X., Cobb G. P., Anderson T. A. (2007). microRNAs as oncogenes and tumor suppressors. Dev. Biol. 302, 1–12. 10.1016/J.YDBIO.2006.08.028 PubMed DOI

Zhang C., Feng Y., Qu S., Wei X., Zhu H., Luo Q., et al. (2011). Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc. Res. 90, 538–545. 10.1093/CVR/CVR022 PubMed DOI

Zhang S., Liu X., Bawa-Khalfe T., Lu L. S., Lyu Y. L., Liu L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18 (11 18), 1639–1642. 10.1038/nm.2919 PubMed DOI

Zhang W., Lai X., Guo X. F. (2021a). Activation of Nrf2 by miR-152 inhibits doxorubicin-induced cardiotoxicity via attenuation of oxidative stress, inflammation, and apoptosis. Oxid. Med. Cell. Longev. 2021, 8860883. 10.1155/2021/8860883 PubMed DOI PMC

Zhang W. bin, Zheng Y. F., Wu Y. G. (2021b). Inhibition of miR-128-3p attenuated doxorubicin-triggered acute cardiac injury in mice by the regulation of PPAR-γ. PPAR Res. 2021, 7595374. 10.1155/2021/7595374 PubMed DOI PMC

Zhang X., Hu C., Kong C. Y., Song P., Wu H. M., Xu S. C., et al. (2019). FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell. Death Differ. 27 (2 27), 540–555. 10.1038/s41418-019-0372-z PubMed DOI PMC

Zhang X., Ji R., Liao X., Castillero E., Kennel P. J., Brunjes D. L., et al. (2018). MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation 137, 2052–2067. 10.1161/CIRCULATIONAHA.117.030486 PubMed DOI PMC

Zhang X., Lv S., Zhang W., Jia Q., Wang L., Ding Y., et al. (2021c). Shenmai injection improves doxorubicin cardiotoxicity via miR-30a/Beclin 1. Biomed. Pharmacother. 139, 111582. 10.1016/J.BIOPHA.2021.111582 PubMed DOI

Zhang X., Wan G., Mlotshwa S., Vance V., Berger F. G., Chen H., et al. (2010). Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 70, 7176–7186. 10.1158/0008-5472.CAN-10-0697 PubMed DOI PMC

Zhang Y., Ma C., Liu C., Wei F. (2020). Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signalling pathway. PeerJ 2020, e8845. 10.7717/peerj.8845 PubMed DOI PMC

Zhao L., Qi Y., Xu L., Tao X., Han X., Yin L., et al. (2018). MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol. 15, 284–296. 10.1016/J.REDOX.2017.12.013 PubMed DOI PMC

Zhu J. N., Fu Y. H., Hu Z. Q., Li W. Y., Tang C. M., Fei H. W., et al. (2017). Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci. Rep. 7 (1 7), 11879–11912. 10.1038/s41598-017-12192-y PubMed DOI PMC

Zhu W., Soonpaa M. H., Chen H., Shen W., Payne R. M., Liechty E. A., et al. (2009). Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation 119, 99–106. 10.1161/CIRCULATIONAHA.108.799700 PubMed DOI PMC

Zhuang S., Ma Y., Zeng Y., Lu C., Yang F., Jiang N., et al. (2021). METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell. Biol. Toxicol. 1, 1–21. 10.1007/s10565-021-09660-7 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace