Multifunctional Roles of miR-34a in Cancer: A Review with the Emphasis on Head and Neck Squamous Cell Carcinoma and Thyroid Cancer with Clinical Implications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
18-03978S
Grantová Agentura České Republiky
18-08-00229
Ministerstvo Zdravotnictví Ceské Republiky
Progres Q28/LF1(UNCE 204013)
Univerzita Karlova v Praze
Progres Q39
Univerzita Karlova v Praze
VTR
Pirkanmaa Cancer Foundation
PubMed
32764498
PubMed Central
PMC7459507
DOI
10.3390/diagnostics10080563
PII: diagnostics10080563
Knihovny.cz E-zdroje
- Klíčová slova
- head and neck squamous cell carcinoma, miR-34a, thyroid cancer,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
MiR-34a belongs to the class of small non-coding regulatory RNAs and functions as a tumor suppressor. Under physiological conditions, miR-34a has an inhibitory effect on all processes related to cell proliferation by targeting many proto-oncogenes and silencing them on the post-transcriptional level. However, deregulation of miR-34a was shown to play important roles in tumorigenesis and processes associated with cancer progression, such as tumor-associated epithelial-mesenchymal transition, invasion, and metastasis. Moreover, further understanding of miR-34a molecular mechanisms in cancer are indispensable for the development of effective diagnosis and treatments. In this review, we summarized the current knowledge on miR-34a functions in human disease with an emphasis on its regulation and dysregulation, its role in human cancer, specifically head and neck squamous carcinoma and thyroid cancer, and emerging role as a disease diagnostic and prognostic biomarker and the novel therapeutic target in oncology.
Department of Biology Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Faculty of Medicine and Health Technology Tampere University 33520 Tampere Finland
Zobrazit více v PubMed
Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Almeida M.I., Reis R.M., Calin G.A. MicroRNA history: Discovery, recent applications, and next frontiers. Mutat. Res. 2011;717:1–8. doi: 10.1016/j.mrfmmm.2011.03.009. PubMed DOI
Gu W., Xu Y., Xie X., Wang T., Ko J.H., Zhou T. The role of RNA structure at 5′ untranslated region in microRNA-mediated gene regulation. RNA. 2014;20:1369–1375. doi: 10.1261/rna.044792.114. PubMed DOI PMC
Matsuyama H., Suzuki H.I. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int. J. Mol. Sci. 2019;21:132. doi: 10.3390/ijms21010132. PubMed DOI PMC
Misso G., Di Martino M.T., De Rosa G., Farooqi A.A., Lombardi A., Campani V., Zarone M.R., Gulla A., Tagliaferri P., Tassone P., et al. Mir-34: A new weapon against cancer? Mol. Ther. Nucleic Acids. 2014;3:e194. doi: 10.1038/mtna.2014.47. PubMed DOI PMC
Zhang L., Liao Y., Tang L. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res. 2019;38:53. doi: 10.1186/s13046-019-1059-5. PubMed DOI PMC
Agostini M., Knight R.A. MiR-34: From bench to bedside. Oncotarget. 2014;5:872–881. doi: 10.18632/oncotarget.1825. PubMed DOI PMC
Kim J.S., Kim E.J., Lee S., Tan X., Liu X., Park S., Kang K., Yoon J.S., Ko Y.H., Kurie J.M., et al. MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp. Mol. Med. 2019;51:1–10. doi: 10.1038/s12276-018-0203-1. PubMed DOI PMC
Li L. Regulatory mechanisms and clinical perspectives of miR-34a in cancer. J. Cancer Res. Ther. 2014;10:805–810. doi: 10.4103/0973-1482.146084. PubMed DOI
Rokavec M., Li H., Jiang L., Hermeking H. The p53/miR-34 axis in development and disease. J. Mol. Cell Biol. 2014;6:214–230. doi: 10.1093/jmcb/mju003. PubMed DOI
Ludvikova M., Kalfert D., Kholova I. Pathobiology of MicroRNAs and Their Emerging Role in Thyroid Fine-Needle Aspiration. Acta Cytol. 2015;59:435–444. doi: 10.1159/000442145. PubMed DOI
Bommer G.T., Gerin I., Feng Y., Kaczorowski A.J., Kuick R., Love R.E., Zhai Y., Giordano T.J., Qin Z.S., Moore B.B., et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 2007;17:1298–1307. doi: 10.1016/j.cub.2007.06.068. PubMed DOI
Hermeking H. p53 enters the microRNA world. Cancer Cell. 2007;12:414–418. doi: 10.1016/j.ccr.2007.10.028. PubMed DOI
Chang T.C., Wentzel E.A., Kent O.A., Ramachandran K., Mullendore M., Lee K.H., Feldmann G., Yamakuchi M., Ferlito M., Lowenstein C.J., et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell. 2007;26:745–752. doi: 10.1016/j.molcel.2007.05.010. PubMed DOI PMC
He L., He X., Lim L.P., de Stanchina E., Xuan Z., Liang Y., Xue W., Zender L., Magnus J., Ridzon D., et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–1134. doi: 10.1038/nature05939. PubMed DOI PMC
Feng Z., Zhang C., Wu R., Hu W. Tumor suppressor p53 meets microRNAs. J. Mol. Cell Biol. 2011;3:44–50. doi: 10.1093/jmcb/mjq040. PubMed DOI PMC
Yamakuchi M., Ferlito M., Lowenstein C.J. MiR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA. 2008;105:13421–13426. doi: 10.1073/pnas.0801613105. PubMed DOI PMC
Mandke P., Wyatt N., Fraser J., Bates B., Berberich S.J., Markey M.P. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS ONE. 2012;7:e42034. doi: 10.1371/journal.pone.0042034. PubMed DOI PMC
Navarro F., Lieberman J. MiR-34 and p53: New Insights into a Complex Functional Relationship. PLoS ONE. 2015;10:e0132767. doi: 10.1371/journal.pone.0132767. PubMed DOI PMC
Chen F., Hu S.J. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. J. Biochem. Mol. Toxicol. 2012;26:79–86. doi: 10.1002/jbt.20412. PubMed DOI
Slabakova E., Culig Z., Remsik J., Soucek K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017;8:e3100. doi: 10.1038/cddis.2017.495. PubMed DOI PMC
Baer C., Claus R., Frenzel L.P., Zucknick M., Park Y.J., Gu L., Weichenhan D., Fischer M., Pallasch C.P., Herpel E., et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012;72:3775–3785. doi: 10.1158/0008-5472.CAN-12-0803. PubMed DOI
Christoffersen N.R., Shalgi R., Frankel L.B., Leucci E., Lees M., Klausen M., Pilpel Y., Nielsen F.C., Oren M., Lund A.H. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–245. doi: 10.1038/cdd.2009.109. PubMed DOI
Ebert M.S., Neilson J.R., Sharp P.A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat. Methods. 2007;4:721–726. doi: 10.1038/nmeth1079. PubMed DOI PMC
Salmena L., Poliseno L., Tay Y., Kats L., Pandolfi P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–358. doi: 10.1016/j.cell.2011.07.014. PubMed DOI PMC
de Oliveira J.C., Oliveira L.C., Mathias C., Pedroso G.A., Lemos D.S., Salviano-Silva A., Jucoski T.S., Lobo-Alves S.C., Zambalde E.P., Cipolla G.A., et al. Long non-coding RNAs in cancer: Another layer of complexity. J. Gene Med. 2019;21:e3065. doi: 10.1002/jgm.3065. PubMed DOI
Gupta P.K. Competing endogenous RNA (ceRNA): A new class of RNA working as miRNA sponges. Curr. Sci. 2014;106:823–830.
He R., Liu P., Xie X., Zhou Y., Liao Q., Xiong W., Li X., Li G., Zeng Z., Tang H. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J. Exp. Clin. Cancer Res. 2017;36:145. doi: 10.1186/s13046-017-0614-1. PubMed DOI PMC
Huang X., Xie X., Liu P., Yang L., Chen B., Song C., Tang H., Xie X. Adam12 and lnc015192 act as ceRNAs in breast cancer by regulating miR-34a. Oncogene. 2018;37:6316–6326. doi: 10.1038/s41388-018-0410-1. PubMed DOI
Luo L., Zhang Y., He H., Chen C., Zhang B., Cai M. LncRNA FEZF1-AS1 Sponges miR-34a to Upregulate Notch-1 in Glioblastoma. Cancer Manag. Res. 2020;12:1827–1833. doi: 10.2147/CMAR.S240531. PubMed DOI PMC
Chen P.C., Yu C.C., Huang W.Y., Huang W.H., Chuang Y.M., Lin R.I., Lin J.M.J., Lin H.Y., Jou Y.C., Shen C.H., et al. c-Myc Acts as a Competing Endogenous RNA to Sponge miR-34a, in the Upregulation of CD44, in Urothelial Carcinoma. Cancers (Basel) 2019;11:1457. doi: 10.3390/cancers11101457. PubMed DOI PMC
Chou C.H., Chang N.W., Shrestha S., Hsu S.D., Lin Y.L., Lee W.H., Yang C.D., Hong H.C., Wei T.Y., Tu S.J., et al. MiRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44:D239–D247. doi: 10.1093/nar/gkv1258. PubMed DOI PMC
Brabletz T. MiR-34 and SNAIL: Another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle. 2012;11:215–216. doi: 10.4161/cc.11.2.18900. PubMed DOI
Sun F., Fu H., Liu Q., Tie Y., Zhu J., Xing R., Sun Z., Zheng X. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 2008;582:1564–1568. doi: 10.1016/j.febslet.2008.03.057. PubMed DOI
Nie D., Fu J., Chen H., Cheng J., Fu J. Roles of MicroRNA-34a in Epithelial to Mesenchymal Transition, Competing Endogenous RNA Sponging and Its Therapeutic Potential. Int. J. Mol. Sci. 2019;20:861. doi: 10.3390/ijms20040861. PubMed DOI PMC
Yamakuchi M., Lowenstein C.J. MiR-34, SIRT1 and p53: The feedback loop. Cell Cycle. 2009;8:712–715. doi: 10.4161/cc.8.5.7753. PubMed DOI
Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Siemens H., Neumann J., Jackstadt R., Mansmann U., Horst D., Kirchner T., Hermeking H. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin. Cancer Res. 2013;19:710–720. doi: 10.1158/1078-0432.CCR-12-1703. PubMed DOI
Wang X., Li J., Dong K., Lin F., Long M., Ouyang Y., Wei J., Chen X., Weng Y., He T., et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell. Signal. 2015;27:443–452. doi: 10.1016/j.cellsig.2014.12.003. PubMed DOI
Chen L., Yang C., Feng J., Liu X., Tian Y., Zhao L., Xie R., Liu C., Zhao S., Sun H. Clinical significance of miR-34a expression in thyroid diseases-an (18)F-FDG PET-CT study. Cancer Manag. Res. 2017;9:903–913. doi: 10.2147/CMAR.S143110. PubMed DOI PMC
Ma Y., Qin H., Cui Y. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem. Biophys. Res. Commun. 2013;441:958–963. doi: 10.1016/j.bbrc.2013.11.010. PubMed DOI
Sundarbose K., Kartha R.V., Subramanian S. MicroRNAs as Biomarkers in Cancer. Diagnostics. 2013;3:84–104. doi: 10.3390/diagnostics3010084. PubMed DOI PMC
Kalfert D., Pesta M., Kulda V., Topolcan O., Ryska A., Celakovsky P., Laco J., Ludvikova M. MicroRNA profile in site-specific head and neck squamous cell cancer. Anticancer Res. 2015;35:2455–2463. PubMed
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018;68:7–30. doi: 10.3322/caac.21442. PubMed DOI
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Ramqvist T., Dalianis T. An epidemic of oropharyngeal squamous cell carcinoma (OSCC) due to human papillomavirus (HPV) infection and aspects of treatment and prevention. Anticancer Res. 2011;31:1515–1519. PubMed
Zhang J., Wang Y., Chen X., Zhou Y., Jiang F., Chen J., Wang L., Zhang W.F. MiR-34a suppresses amphiregulin and tumor metastatic potential of head and neck squamous cell carcinoma (HNSCC) Oncotarget. 2015;6:7454–7469. doi: 10.18632/oncotarget.3148. PubMed DOI PMC
Kozaki K., Imoto I., Mogi S., Omura K., Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68:2094–2105. doi: 10.1158/0008-5472.CAN-07-5194. PubMed DOI
Scapoli L., Palmieri A., Lo Muzio L., Pezzetti F., Rubini C., Girardi A., Farinella F., Mazzotta M., Carinci F. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int. J. Immunopathol. Pharmacol. 2010;23:1229–1234. doi: 10.1177/039463201002300427. PubMed DOI
Metheetrairut C., Chotigavanich C., Amornpichetkul K., Keskool P., Ongard S., Metheetrairut C. Expression levels of miR-34-family microRNAs are associated with TP53 mutation status in head and neck squamous cell carcinoma. Eur. Arch. Otorhinolaryngol. 2019;276:521–533. doi: 10.1007/s00405-018-5223-x. PubMed DOI
Lodygin D., Tarasov V., Epanchintsev A., Berking C., Knyazeva T., Korner H., Knyazev P., Diebold J., Hermeking H. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7:2591–2600. doi: 10.4161/cc.7.16.6533. PubMed DOI
Corney D.C., Hwang C.I., Matoso A., Vogt M., Flesken-Nikitin A., Godwin A.K., Kamat A.A., Sood A.K., Ellenson L.H., Hermeking H., et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin. Cancer Res. 2010;16:1119–1128. doi: 10.1158/1078-0432.CCR-09-2642. PubMed DOI PMC
Lajer C.B., von Buchwald C. The role of human papillomavirus in head and neck cancer. APMIS. 2010;118:510–519. doi: 10.1111/j.1600-0463.2010.02624.x. PubMed DOI
Overhoff M.G., Garbe J.C., Koh J., Stampfer M.R., Beach D.H., Bishop C.L. Cellular senescence mediated by p16INK4A-coupled miRNA pathways. Nucleic Acids Res. 2014;42:1606–1618. doi: 10.1093/nar/gkt1096. PubMed DOI PMC
Wang Y., Chen J., Chen X., Jiang F., Sun Y., Pan Y., Zhang W., Zhang J. MiR-34a suppresses HNSCC growth through modulating cell cycle arrest and senescence. Neoplasma. 2017;64:543–553. doi: 10.4149/neo_2017_408. PubMed DOI
Shen Z., Zhan G., Ye D., Ren Y., Cheng L., Wu Z., Guo J. MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin. Med. Oncol. 2012;29:2473–2480. doi: 10.1007/s12032-011-0156-x. PubMed DOI
Kumar B., Yadav A., Lang J., Teknos T.N., Kumar P. Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS ONE. 2012;7:e37601. doi: 10.1371/journal.pone.0037601. PubMed DOI PMC
Li J., Liu K., Zhang T., Yang Z., Wang R., Chen G., Kang M. A comprehensive investigation using meta-analysis and bioinformatics on miR-34a-5p expression and its potential role in head and neck squamous cell carcinoma. Am. J. Transl. Res. 2018;10:2246–2263. PubMed PMC
Wei L., Shi C., Zhang Y. Expression of miR-34a and Ki67 in nasopharyngeal carcinoma and the relationship with clinicopathological features and prognosis. Oncol. Lett. 2020;19:1273–1280. doi: 10.3892/ol.2019.11217. PubMed DOI PMC
Song P., Ye L.F., Zhang C., Peng T., Zhou X.H. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p. Gene. 2016;592:8–14. doi: 10.1016/j.gene.2016.07.055. PubMed DOI
Ludvikova M., Kholova I., Kalfert D. Molecular Aspects of Thyroid Tumors with Emphasis on MicroRNA and Their Clinical Implications. Klin. Onkol. 2017;30:167–174. doi: 10.14735/amko2017167. PubMed DOI
Forte S., La Rosa C., Pecce V., Rosignolo F., Memeo L. The role of microRNAs in thyroid carcinomas. Anticancer Res. 2015;35:2037–2047. PubMed
Lee J.C., Zhao J.T., Clifton-Bligh R.J., Gill A., Gundara J.S., Ip J.C., Glover A., Sywak M.S., Delbridge L.W., Robinson B.G., et al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer. 2013;119:4358–4365. doi: 10.1002/cncr.28254. PubMed DOI
Sheu S.Y., Grabellus F., Schwertheim S., Worm K., Broecker-Preuss M., Schmid K.W. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br. J. Cancer. 2010;102:376–382. doi: 10.1038/sj.bjc.6605493. PubMed DOI PMC
Cong D., He M., Chen S., Liu X., Liu X., Sun H. Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma: An analysis of The Cancer Genome Atlas. Onco Targets Ther. 2015;8:2271–2277. doi: 10.2147/OTT.S85753. PubMed DOI PMC
Yang L.-J., Wang D.-G., Chen J.-Y., Zhang H.-Y., Zhang F.-F., Mou Y.-H. Expression of miR-34a and its role in human papillary thyroid carcinoma. Int. J. Clin. Exp. Pathol. 2017;10:3258–3264.
Liu Q., Pan L.Z., Hu M., Ma J.Y. Molecular Network-Based Identification of Circular RNA-Associated ceRNA Network in Papillary Thyroid Cancer. Pathol. Oncol. Res. 2020;26:1293–1299. doi: 10.1007/s12253-019-00697-y. PubMed DOI
Shabani N., Razaviyan J., Paryan M., Tavangar S.M., Azizi F., Mohammadi-Yeganeh S., Hedayati M. Evaluation of miRNAs expression in medullary thyroid carcinoma tissue samples: MiR-34a and miR-144 as promising overexpressed markers in MTC. Hum. Pathol. 2018;79:212–221. doi: 10.1016/j.humpath.2018.05.019. PubMed DOI
Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI
Negrini M., Ferracin M., Sabbioni S., Croce C.M. MicroRNAs in human cancer: From research to therapy. J. Cell Sci. 2007;120:1833–1840. doi: 10.1242/jcs.03450. PubMed DOI
Hibner G., Kimsa-Furdzik M., Francuz T. Relevance of MicroRNAs as Potential Diagnostic and Prognostic Markers in Colorectal Cancer. Int. J. Mol. Sci. 2018;19:2944. doi: 10.3390/ijms19102944. PubMed DOI PMC
Imani S., Zhang X., Hosseinifard H., Fu S., Fu J. The diagnostic role of microRNA-34a in breast cancer: A systematic review and meta-analysis. Oncotarget. 2017;8:23177–23187. doi: 10.18632/oncotarget.15520. PubMed DOI PMC
Liu X., Li H. Diagnostic Value of miR-34a in Bone Marrow Mononuclear Cells of Acute Myeloid Leukemia Patients. Clin. Lab. 2020;66 doi: 10.7754/Clin.Lab.2019.190730. PubMed DOI
Hasakova K., Reis R., Vician M., Zeman M., Herichova I. Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PLoS ONE. 2019;14:e0224396. doi: 10.1371/journal.pone.0224396. PubMed DOI PMC
Imani S., Wu R.C., Fu J. MicroRNA-34 family in breast cancer: From research to therapeutic potential. J. Cancer. 2018;9:3765–3775. doi: 10.7150/jca.25576. PubMed DOI PMC
Erbes T., Hirschfeld M., Rucker G., Jaeger M., Boas J., Iborra S., Mayer S., Gitsch G., Stickeler E. Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer. 2015;15:193. doi: 10.1186/s12885-015-1190-4. PubMed DOI PMC
Mishra S., Srivastava A.K., Suman S., Kumar V., Shukla Y. Circulating miRNAs revealed as surrogate molecular signatures for the early detection of breast cancer. Cancer Lett. 2015;369:67–75. doi: 10.1016/j.canlet.2015.07.045. PubMed DOI
Duan W., Xu Y., Dong Y., Cao L., Tong J., Zhou X. Ectopic expression of miR-34a enhances radiosensitivity of non-small cell lung cancer cells, partly by suppressing the LyGDI signaling pathway. J. Radiat. Res. 2013;54:611–619. doi: 10.1093/jrr/rrs136. PubMed DOI PMC
Rupaimoole R., Slack F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017;16:203–222. doi: 10.1038/nrd.2016.246. PubMed DOI
Courthod G., Franco P., Palermo L., Pisconti S., Numico G. The role of microRNA in head and neck cancer: Current knowledge and perspectives. Molecules. 2014;19:5704–5716. doi: 10.3390/molecules19055704. PubMed DOI PMC
Hong D.S., Kang Y.K., Borad M., Sachdev J., Ejadi S., Lim H.Y., Brenner A.J., Park K., Lee J.L., Kim T.Y., et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer. 2020;122:1630–1637. doi: 10.1038/s41416-020-0802-1. PubMed DOI PMC
Harnessing p53 for targeted cancer therapy: new advances and future directions
MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response