Harnessing p53 for targeted cancer therapy: new advances and future directions

. 2025 Feb ; 16 (1) : 3-46. [epub] 20250303

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40031988

Grantová podpora
R01 CA117907 NCI NIH HHS - United States

The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.

Zobrazit více v PubMed

Uhlen M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419 PubMed DOI

Andrysik Z, Galbraith MD, Guarnieri AL, et al. Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity. Genome Res. 2017;27(10):1645–1657. doi: 10.1101/gr.220533.117 PubMed DOI PMC

Takeshima H, Ushijima T.. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol. 2019;3(7). doi: 10.1038/s41698-019-0079-0 PubMed DOI PMC

You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20. doi: 10.1016/j.ccr.2012.06.008 PubMed DOI PMC

Chatterjee N, Bivona TG. Polytherapy and targeted cancer drug resistance. Trends Cancer. 2019;5(3):170–182. doi: 10.1016/j.trecan.2019.02.003 PubMed DOI PMC

Sabnis AJ, Bivona TG. Principles of resistance to Targeted Cancer Therapy: Lessons from Basic and Translational Cancer Biology. Trends Mol Med. 2019;25(3):185–197. doi: 10.1016/j.molmed.2018.12.009 PubMed DOI PMC

Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 2019;12(1):134. doi: 10.1186/s13045-019-0818-2 PubMed DOI PMC

Luo Y, Hitz BC, Gabdank I, et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 2020;48(D1):D882–D889. doi: 10.1093/nar/gkz1062 PubMed DOI PMC

Nguyen TT, Grimm SA, Bushel PR, et al. Revealing a human p53 universe. Nucleic Acids Res. 2018;46(16):8153–8167. doi: 10.1093/nar/gky720 PubMed DOI PMC

Sammons MA, Nguyen TT, McDade SS, et al. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res. 2020;48(16):8848–8869. doi: 10.1093/nar/gkaa666 PubMed DOI PMC

Chen Y, Dey R, Chen L. Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Structure. 2010;18(2):246–256. doi: 10.1016/j.str.2009.11.011 PubMed DOI PMC

Bao F, LoVerso PR, Fisk JN, et al. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context. Cell Cycle. 2017;16(21):2073–2085. doi: 10.1080/15384101.2017.1361064 PubMed DOI PMC

Brazda V, Fojta M. The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci. 2019;20(22):5605. doi: 10.3390/ijms20225605 PubMed DOI PMC

Aptekmann AA, Bulavka D, Nadra AD, et al. Transcription factor specificity limits the number of DNA-binding motifs. PLOS ONE. 2022;17(1):e0263307. doi: 10.1371/journal.pone.0263307 PubMed DOI PMC

Stewart AJ, Hannenhalli S, Plotkin JB. Why transcription factor binding sites are ten nucleotides long. Genetics. 2012;192:973–985. doi: 10.1534/genetics.112.143370 PubMed DOI PMC

Iwafuchi-Doi M. The mechanistic basis for chromatin regulation by pioneer transcription factors. Wiley Interdiscip Rev Syst Biol Med. 2019;11(1):e1427. doi: 10.1002/wsbm.1427 PubMed DOI PMC

Mayran A, Drouin J. Pioneer transcription factors shape the epigenetic landscape. J Biol Chem. 2018;293(36):13795–13804. doi: 10.1074/jbc.R117.001232 PubMed DOI PMC

Espinosa JM, Emerson BM. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell. 2001;8(1):57–69. doi: 10.1016/s1097-2765(01)00283-0 PubMed DOI

Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–218. doi: 10.1038/nature12213 PubMed DOI PMC

Lidor Nili E, Field Y, Lubling Y, et al. p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res. 2010;20(10):1361–1368. doi: 10.1101/gr.103945.109 PubMed DOI PMC

Sammons MA, Zhu J, Drake AM, et al. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity. Genome Res. 2015;25(2):179–188. doi: 10.1101/gr.181883.114 PubMed DOI PMC

Younger ST, Rinn JL. p53 regulates enhancer accessibility and activity in response to DNA damage. Nucleic Acids Res. 2017;45(17):9889–9900. doi: 10.1093/nar/gkx577 PubMed DOI PMC

Cahilly-Snyder L, Yang-Feng T, Francke U, et al. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet. 1987;13(3):235–244. doi: 10.1007/BF01535205 PubMed DOI

Momand J, Zambetti GP, Olson DC, et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69(7):1237–1245. doi: 10.1016/0092-8674(92)90644-r PubMed DOI

Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–299. doi: 10.1038/387296a0 PubMed DOI

Kubbutat MH, Ludwig RL, Ashcroft M, et al. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol. 1998;18(10):5690–5698. doi: 10.1128/MCB.18.10.5690 PubMed DOI PMC

Maki CG. Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2. J Biol Chem. 1999;274(23):16531–16535. doi: 10.1074/jbc.274.23.16531 PubMed DOI

Shirangi TR, Zaika A, Moll UM. Nuclear degradation of p53 occurs during down-regulation of the p53 response after DNA damage. FASEB J. 2002;16(3):420–422. doi: 10.1096/fj.01-0617fje PubMed DOI

Barak Y, Juven T, Haffner R, et al. mdm2 expression is induced by wild type p53 activity. Embo J. 1993;12(2):461–468. doi: 10.1002/j.1460-2075.1993.tb05678.x PubMed DOI PMC

Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998;12(19):2973–2983. doi: 10.1101/gad.12.19.2973 PubMed DOI

Francoz S, Froment P, Bogaerts S, et al. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci U S A. 2006;103(9):3232–3237. doi: 10.1073/pnas.0508476103 PubMed DOI PMC

Jones SN, Roe AE, Donehower LA, et al. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378(6553):206–208. doi: 10.1038/378206a0 PubMed DOI

Migliorini D, Denchi EL, Danovi D, et al. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol. 2002;22(15):5527–5538. doi: 10.1128/MCB.22.15.5527-5538.2002 PubMed DOI PMC

Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378(6553):203–206. doi: 10.1038/378203a0 PubMed DOI

Parant J, Chavez-Reyes A, Little NA, et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet. 2001;29(1):92–95. doi: 10.1038/ng714 PubMed DOI

Shvarts A, Steegenga WT, Riteco N, et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. Embo J. 1996;15(19):5349–5357. doi: 10.1002/j.1460-2075.1996.tb00919.x PubMed DOI PMC

Markey MP. Regulation of MDM4. Front Biosci (Landmark Ed). 2011;16(1):1144–1156. doi: 10.2741/3780 PubMed DOI

Szwarc MM, Guarnieri AL, Joshi M, et al. FAM193A is a positive regulator of p53 activity. Cell Rep. 2023;42(3):112230. doi: 10.1016/j.celrep.2023.112230 PubMed DOI PMC

Hirao A, Kong Y-Y, Matsuoka S, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000;287(5459):1824–1827. doi: 10.1126/science.287.5459.1824 PubMed DOI

Kastan MB, Zhan Q, El-Deiry WS, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2 PubMed DOI

Ou YH, Chung PH, Sun TP, et al. p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Mol Biol Cell. 2005;16(4):1684–1695. doi: 10.1091/mbc.e04-08-0689 PubMed DOI PMC

Tibbetts RS, Brumbaugh KM, Williams JM, et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999;13(2):152–157. doi: 10.1101/gad.13.2.152 PubMed DOI PMC

Woo RA, McLure KG, Lees-Miller SP, et al. DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature. 1998;394(6694):700–704. doi: 10.1038/29343 PubMed DOI

Shi T, van Soest DMK, Polderman PE, et al. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol Med. 2021;172:298–311. doi: 10.1016/j.freeradbiomed.2021.06.013 PubMed DOI

Wagstaff L, Goschorska M, Kozyrska K, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7(1):11373. doi: 10.1038/ncomms11373 PubMed DOI PMC

Fiscella M, Zhang H, Fan S, et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci U S A. 1997;94(12):6048–6053. doi: 10.1073/pnas.94.12.6048 PubMed DOI PMC

Li J, Yang Y, Peng Y, et al. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet. 2002;31(2):133–134. doi: 10.1038/ng888 PubMed DOI

Macurek L, Lindqvist A, Voets O, et al. Wip1 phosphatase is associated with chromatin and dephosphorylates γH2AX to promote checkpoint inhibition. Oncogene. 2010;29(15):2281–2291. doi: 10.1038/onc.2009.501 PubMed DOI

Bulavin DV, Phillips C, Nannenga B, et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK–mediated activation of the p16Ink4a-p19Arf pathway. Nat Genet. 2004;36(4):343–350. doi: 10.1038/ng1317 PubMed DOI

Saito-Ohara F, Imoto I, Inoue J, et al. PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res. 2003;63(8):1876–1883. PubMed

Song JY, Han H-S, Sabapathy K, et al. Expression of a homeostatic regulator, Wip1 (wild-type p53-induced phosphatase), is temporally induced by c-Jun and p53 in response to UV irradiation. J Biol Chem. 2010;285(12):9067–9076. doi: 10.1074/jbc.M109.070003 PubMed DOI PMC

Andrysik Z, Sullivan KD, Kieft JS, et al. PPM1D suppresses p53-dependent transactivation and cell death by inhibiting the Integrated Stress Response. Nat Commun. 2022;13(1):7400. doi: 10.1038/s41467-022-35089-5 PubMed DOI PMC

Choi J, Nannenga B, Demidov ON, et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol Cell Biol. 2002;22(4):1094–1105. doi: 10.1128/MCB.22.4.1094-1105.2002 PubMed DOI PMC

Okamoto K, Li H, Jensen MR, et al. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell. 2002;9:761–771. doi: 10.1016/s1097-2765(02)00504-x PubMed DOI

Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24(17):2899–2908. doi: 10.1038/sj.onc.1208615 PubMed DOI

Mirzayans R, Andrais B, Scott A, et al. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol. 2012;2012:1–16. doi: 10.1155/2012/170325 PubMed DOI PMC

Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol. 2019;11(7):564–577. doi: 10.1093/jmcb/mjz060 PubMed DOI PMC

Liebl MC, Hofmann TG. The Role of p53 Signaling in Colorectal Cancer. Cancers (Basel). 2021;13(9):2125. doi: 10.3390/cancers13092125 PubMed DOI PMC

Raj N, Attardi LD. The Transactivation Domains of the p53 Protein. Cold Spring Harb Perspect Med. 2017;7(1):a026047. doi: 10.1101/cshperspect.a026047 PubMed DOI PMC

Hafner A, Bulyk ML, Jambhekar A, et al. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20(4):199–210. doi: 10.1038/s41580-019-0110-x PubMed DOI

Lowe SW, Sherr CJ. Tumor suppression by Ink4a–Arf: progress and puzzles. Curr Opin Genet Dev. 2003;13(1):77–83. doi: 10.1016/s0959-437x(02)00013-8 PubMed DOI

Pomerantz J, Schreiber-Agus N, Liégeois NJ, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2‘s inhibition of p53. Cell. 1998;92(6):713–723. doi: 10.1016/s0092-8674(00)81400-2 PubMed DOI

Lacroix M, Riscal R, Arena G, et al. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab. 2020;33:2–22. doi: 10.1016/j.molmet.2019.10.002 PubMed DOI PMC

Okoshi R, Ozaki T, Yamamoto H, et al. Activation of amp-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 2008;283(7):3979–3987. doi: 10.1074/jbc.M705232200 PubMed DOI

Prokesch A, Graef FA, Madl T, et al. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. FASEB J. 2017;31(2):732–742. doi: 10.1096/fj.201600845R PubMed DOI PMC

Feng Z, Zhang H, Levine AJ, et al. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A. 2005;102(23):8204–8209. doi: 10.1073/pnas.0502857102 PubMed DOI PMC

Humpton TJ, Vousden KH. Regulation of Cellular Metabolism and Hypoxia by p53. Cold Spring Harb Perspect Med. 2016;6(7):a026146. doi: 10.1101/cshperspect.a026146 PubMed DOI PMC

Ishak Gabra MB, Yang Y, Lowman XH, et al. IKKβ activates p53 to promote cancer cell adaptation to glutamine deprivation. Oncogenesis. 2018;7(93). doi: 10.1038/s41389-018-0104-0 PubMed DOI PMC

Shim HS, Wei M, Brandhorst S, et al. Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer Res. 2015;75(6):1056–1067. doi: 10.1158/0008-5472.CAN-14-2249 PubMed DOI PMC

Andrysik Z, Bender H, Galbraith MD, et al. Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response. Nat Commun. 2021;12(1):1375. doi: 10.1038/s41467-021-21687-2 PubMed DOI PMC

Zhang C, Liu J, Wang J, et al. The Interplay Between Tumor Suppressor p53 and Hypoxia Signaling Pathways in Cancer. Front Cell Dev Biol. 2021;9:648808. doi: 10.3389/fcell.2021.648808 PubMed DOI PMC

Lerma Clavero A, Boqvist PL, Ingelshed K, et al. MDM2 inhibitors, nutlin-3a and navtemadelin, retain efficacy in human and mouse cancer cells cultured in hypoxia. Sci Rep. 2023;13(1):4583. doi: 10.1038/s41598-023-31484-0 PubMed DOI PMC

Karakashev SV, Reginato MJ. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy. Cancer Manag Res. 2015;7:253–264. doi: 10.2147/CMAR.S58285 PubMed DOI PMC

Li XF, O’Donoghue JA. Hypoxia in microscopic tumors. Cancer Lett. 2008;264(2):172–180. doi: 10.1016/j.canlet.2008.02.037 PubMed DOI PMC

DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A. 1979;76(5):2420–2424. doi: 10.1073/pnas.76.5.2420 PubMed DOI PMC

Kress M, May E, Cassingena R, et al. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol. 1979;31(2):472–483. doi: 10.1128/JVI.31.2.472-483.1979 PubMed DOI PMC

Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278(5701):261–263. doi: 10.1038/278261a0 PubMed DOI

Levine AJ. The many faces of p53: something for everyone. J Mol Cell Biol. 2019;11(7):524–530. doi: 10.1093/jmcb/mjz026 PubMed DOI PMC

Linzer DI, Levine AJ. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17(1):43–52. doi: 10.1016/0092-8674(79)90293-9 PubMed DOI

Aloni-Grinstein R, Charni-Natan M, Solomon H, et al. p53 and the Viral Connection: Back into the Future ‡. Cancers (Basel). 2018;10(6):178. doi: 10.3390/cancers10060178 PubMed DOI PMC

Butz K, Denk C, Ullmann A, et al. Induction of apoptosis in human papillomavirus positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci U S A. 2000;97(12):6693–6697. doi: 10.1073/pnas.110538897 PubMed DOI PMC

Yang MR, Lee SR, Oh W, et al. West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol. 2008;10(0):165–176. doi: 10.1111/j.1462-5822.2007.01027.x PubMed DOI PMC

Izumi T, Io K, Matsui M, et al. HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication. Proc Natl Acad Sci U S A. 2010;107(48):20798–20803. doi: 10.1073/pnas.1008076107 PubMed DOI PMC

Shin Y, Lim H, Choi B-S, et al. Highly activated p53 contributes to selectively increased apoptosis of latently HIV-1 infected cells upon treatment of anticancer drugs. Virol J. 2016;13(1):141. doi: 10.1186/s12985-016-0595-2 PubMed DOI PMC

Thakur BK, Chandra A, Dittrich T, et al. Inhibition of SIRT1 by HIV-1 viral protein Tat results in activation of p53 pathway. Biochem Biophys Res Commun. 2012;424(2):245–250. doi: 10.1016/j.bbrc.2012.06.084 PubMed DOI

Takaoka A, Hayakawa S, Yanai H, et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature. 2003;424(6948):516–523. doi: 10.1038/nature01850 PubMed DOI

Rivas C, Aaronson SA, Munoz-Fontela C. Dual Role of p53 in Innate Antiviral Immunity. Viruses. 2010;2(1):298–313. doi: 10.3390/v2010298 PubMed DOI PMC

Hou H, Sun D, Zhang X. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int. 2019;19(1):216. doi: 10.1186/s12935-019-0937-4 PubMed DOI PMC

Oliner JD, Saiki AY, Caenepeel S. The Role of MDM2 Amplification and Overexpression in Tumorigenesis. Cold Spring Harb Perspect Med. 2016;6(6):a026336. doi: 10.1101/cshperspect.a026336 PubMed DOI PMC

Bond GL, Hu W, Bond EE, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004;119(5):591–602. doi: 10.1016/j.cell.2004.11.022 PubMed DOI

Bond GL, Hu W, Levine A. A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. Cancer Res. 2005;65(13):5481–5484. doi: 10.1158/0008-5472.CAN-05-0825 PubMed DOI

Yu DH, Xu Z-Y, Mo S, et al. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol. 2020;10:1389. doi: 10.3389/fonc.2020.01389 PubMed DOI PMC

Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. Annu Rev Pathol. 2016;11(1):617–644. doi: 10.1146/annurev-pathol-012414-040349 PubMed DOI PMC

Deng W, Li J, Dorrah K, et al. The role of PPM1D in cancer and advances in studies of its inhibitors. Biomed Pharmacother. 2020;125:109956. doi: 10.1016/j.biopha.2020.109956 PubMed DOI PMC

Demidov ON, Kek C, Shreeram S, et al. The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene. 2007;26(17):2502–2506. doi: 10.1038/sj.onc.1210032 PubMed DOI

Bonache S, Esteban I, Moles-Fernández A, et al. Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. J Cancer Res Clin Oncol. 2018;144(12):2495–2513. doi: 10.1007/s00432-018-2763-9 PubMed DOI PMC

Tan DS, Lambros MBK, Rayter S, et al. PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res. 2009;15(7):2269–2280. doi: 10.1158/1078-0432.CCR-08-2403 PubMed DOI

Zhang L, Chen LH, Wan H, et al. Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet. 2014;46(7):726–730. doi: 10.1038/ng.2995 PubMed DOI PMC

Kleiblova P, Shaltiel IA, Benada J, et al. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J Cell Biol. 2013;201(4):511–521. doi: 10.1083/jcb.201210031 PubMed DOI PMC

Kahn JD, Miller PG, Silver AJ, et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood. 2018;132(11):1095–1105. doi: 10.1182/blood-2018-05-850339 PubMed DOI PMC

Burocziova M, Burdova K, Martinikova AS, et al. Truncated PPM1D impairs stem cell response to genotoxic stress and promotes growth of apc-deficient tumors in the mouse colon. Cell Death Dis. 2019;10(11):818. doi: 10.1038/s41419-019-2057-4 PubMed DOI PMC

Burocziova M, Danek P, Oravetzova A, et al. Ppm1d truncating mutations promote the development of genotoxic stress-induced AML. Leukemia. 2023;37(11):2209–2220. doi: 10.1038/s41375-023-02030-8 PubMed DOI PMC

Kim B, Won D, Lee ST, et al. Somatic mosaic truncating mutations of PPM1D in blood can result from expansion of a mutant clone under selective pressure of chemotherapy. PLOS ONE. 2019;14(6):e0217521. doi: 10.1371/journal.pone.0217521 PubMed DOI PMC

Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36:3943–3956. doi: 10.1038/onc.2016.502 PubMed DOI PMC

Pant V, Sun C, Lozano G. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Cell Death Differ. 2023;30(4):897–905. doi: 10.1038/s41418-023-01123-2 PubMed DOI PMC

Allen MA, Andrysik Z, Dengler VL, et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. Elife. 2014;3:e02200. doi: 10.7554/eLife.02200 PubMed DOI PMC

Indeglia A, Murphy ME. Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression. Crit Rev Biochem Mol Biol. 2024;59(1–2):128–138. doi: 10.1080/10409238.2024.2344465 PubMed DOI PMC

Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4(1):1–7. doi: 10.1016/s0960-9822(00)00002-6 PubMed DOI

Purdie CA, Harrison DJ, Peter A, et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene. 1994;9(2):603–609. PubMed

Donehower LA. The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol. 1996;7(5):269–278. doi: 10.1006/scbi.1996.0035 PubMed DOI

Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356(6366):215–221. doi: 10.1038/356215a0 PubMed DOI

Choudhury AR, Ju Z, Djojosubroto MW, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet. 2007;39(1):99–105. doi: 10.1038/ng1937 PubMed DOI

Torgovnick A, Heger JM, Liaki V, et al. The Cdkn1a(SUPER) Mouse as a Tool to Study p53-Mediated Tumor Suppression. Cell Rep. 2018;25(4):1027–1039 e1026. doi: 10.1016/j.celrep.2018.09.079 PubMed DOI

Jeffers JR, Parganas E, Lee Y, et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 2003;4(4):321–328. doi: 10.1016/s1535-6108(03)00244-7 PubMed DOI

Qiu W, Carson-Walter EB, Kuan SF, et al. PUMA suppresses intestinal tumorigenesis in mice. Cancer Res. 2009;69(12):4999–5006. doi: 10.1158/0008-5472.CAN-09-0262 PubMed DOI PMC

Qiu W, Wang X, Leibowitz B, et al. Puma–mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology. 2011;54(4):1249–1258. doi: 10.1002/hep.24516 PubMed DOI PMC

Salvador JM, Hollander MC, Nguyen AT, et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity. 2002;16(4):499–508. doi: 10.1016/s1074-7613(02)00302-3 PubMed DOI

Zimmers TA, Gutierrez JC, Koniaris LG. Loss of GDF-15 abolishes sulindac chemoprevention in the ApcMin/+ mouse model of intestinal cancer. J Cancer Res Clin Oncol. 2010;136(4):571–576. doi: 10.1007/s00432-009-0691-4 PubMed DOI PMC

Myer DL, Robbins SB, Yin M, et al. Absence of polo-like kinase 3 in mice stabilizes Cdc25A after DNA damage but is not sufficient to produce tumors. Mutat Res. 2011;714:1–10. doi: 10.1016/j.mrfmmm.2011.02.006 PubMed DOI PMC

Park S, Lee YJ, Lee H-J, et al. B-cell translocation gene 2 (Btg2) regulates vertebral patterning by modulating bone morphogenetic protein/smad signaling. Mol Cell Biol. 2004;24(23):10256–10262. doi: 10.1128/MCB.24.23.10256-10262.2004 PubMed DOI PMC

Zornig M, Grzeschiczek A, Kowalski MB, et al. Loss of Fas/Apo-1 receptor accelerates lymphomagenesis in E mu L-MYC transgenic mice but not in animals infected with MoMuLV. Oncogene. 1995;10(12):2397–2401. PubMed

Knudson CM, Tung KS, Tourtellotte WG, et al. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995;270(5233):96–99. doi: 10.1126/science.270.5233.96 PubMed DOI

Lindsten T, Ross AJ, King A, et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 2000;6(6):1389–1399. doi: 10.1016/s1097-2765(00)00136-2 PubMed DOI PMC

Brennan MS, Brinkmann K, Romero Sola G, et al. Combined absence of TRP53 target genes ZMAT3, PUMA and p21 cause a high incidence of cancer in mice. Cell Death Differ. 2024;31(2):159–169. doi: 10.1038/s41418-023-01250-w PubMed DOI PMC

Wang Z, He Y, Deng W, et al. Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice. Oncogene. 2018;37(1):18–27. doi: 10.1038/onc.2017.310 PubMed DOI PMC

Yoon T, Chakrabortty A, Franks R, et al. Tumor-prone phenotype of the DDB2-deficient mice. Oncogene. 2005;24(3):469–478. doi: 10.1038/sj.onc.1208211 PubMed DOI PMC

Lowe SW, Ruley HE, Jacks T, et al. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74(6):957–967. doi: 10.1016/0092-8674(93)90719-7 PubMed DOI

Li G, Tang L, Zhou X, et al. Chemotherapy-induced apoptosis in melanoma cells is p53 dependent. Melanoma Res. 1998;8(1):17–23. doi: 10.1097/00008390-199802000-00004 PubMed DOI

Xu J, Patel NH, Gewirtz DA. Triangular Relationship between p53, Autophagy, and Chemotherapy Resistance. Int J Mol Sci. 2020;21. doi: 10.3390/ijms21238991 PubMed DOI PMC

Kemp CJ, Sun S, Gurley KE. p53 induction and apoptosis in response to radio- and chemotherapy in vivo is tumor-type-dependent. Cancer Res. 2001;61(1):327–332. PubMed

Weller M. Predicting response to cancer chemotherapy: the role of p53. Cell Tissue Res. 1998;292(3):435–445. doi: 10.1007/s004410051072 PubMed DOI

Li XL, Zhou J, Chen ZR, et al. P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 2015;21(1):84–93. doi: 10.3748/wjg.v21.i1.84 PubMed DOI PMC

Michel M, Kaps L, Maderer A, et al. The Role of p53 Dysfunction in Colorectal Cancer and Its Implication for Therapy. Cancers (Basel). 2021;13(10):2296. doi: 10.3390/cancers13102296 PubMed DOI PMC

Iacopetta B. TP53 mutation in colorectal cancer. Hum Mutat. 2003;21(3):271–276. doi: 10.1002/humu.10175 PubMed DOI

Hamelin R, Laurent-Puig P, Olschwang S, et al. Association of p53 mutations with short survival in colorectal cancer. Gastroenterology. 1994;106(1):42–48. doi: 10.1016/s0016-5085(94)94217-x PubMed DOI

Steels E, Paesmans M, Berghmans T, et al. Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis. Eur Respir J. 2001;18(4):705–719. doi: 10.1183/09031936.01.00062201 PubMed DOI

Tandon S, Tudur-Smith C, Riley RD, et al. A systematic review of p53 as a prognostic factor of survival in squamous cell carcinoma of the four main anatomical subsites of the head and neck. Cancer Epidemiol Biomarkers Prev. 2010;19(2):574–587. doi: 10.1158/1055-9965.EPI-09-0981 PubMed DOI PMC

Pharoah PD, Day NE, Caldas C. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer. 1999;80(12):1968–1973. doi: 10.1038/sj.bjc.6690628 PubMed DOI PMC

Mitsudomi T, Oyama T, Kusano T, et al. Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-cell lung cancer. J Natl Cancer Inst. 1993;85(24):2018–2023. doi: 10.1093/jnci/85.24.2018 PubMed DOI

Wattel E, Preudhomme C, Hecquet B, et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood. 1994;84(9):3148–3157. doi: 10.1182/blood.V84.9.3148.3148 PubMed DOI

Lim BH, Soong R, Grieu F, et al. p53 accumulation and mutation are prognostic indicators of poor survival in human gastric carcinoma. Int J Cancer. 1996;69:200–204. doi: 10.1002/(SICI)1097-0215(19960621)69:3<200:AID-IJC9>3.0.CO;2-3 PubMed DOI

Powell E, Piwnica-Worms D, Piwnica-Worms H. Contribution of p53 to metastasis. Cancer Discov. 2014;4(4):405–414. doi: 10.1158/2159-8290.CD-13-0136 PubMed DOI PMC

Hwang CI, Matoso A, Corney DC, et al. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci U S A. 2011;108(34):14240–14245. doi: 10.1073/pnas.1017536108 PubMed DOI PMC

Russo A, Bazan V, Iacopetta B, et al. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol. 2005;23(30):7518–7528. doi: 10.1200/JCO.2005.00.471 PubMed DOI

Kandioler D, Mittlböck M, Kappel S, et al. TP53 Mutational Status and Prediction of Benefit from Adjuvant 5-Fluorouracil in Stage III Colon Cancer Patients. EBioMedicine. 2015;2(8):825–830. doi: 10.1016/j.ebiom.2015.06.003 PubMed DOI PMC

Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell. 2018;33(1):125–136 e123. doi: 10.1016/j.ccell.2017.12.004 PubMed DOI PMC

Meric-Bernstam F, Zheng X, Shariati M, et al. Survival Outcomes by TP53 Mutation Status in Metastatic Breast Cancer. JCO Precis Oncol. 2018;2018(2):1–15. doi: 10.1200/PO.17.00245 PubMed DOI PMC

Chang YL, Wu CT, Shih JY, et al. Comparison of p53 and epidermal growth factor receptor gene status between primary tumors and lymph node metastases in non-small cell lung cancers. Ann Surg Oncol. 2011;18(2):543–550. doi: 10.1245/s10434-010-1295-6 PubMed DOI

Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703–713. doi: 10.1038/nm.4333 PubMed DOI PMC

Kuijk E, Kranenburg O, Cuppen E, et al. Common anti-cancer therapies induce somatic mutations in stem cells of healthy tissue. Nat Commun. 2022;13(1):5915. doi: 10.1038/s41467-022-33663-5 PubMed DOI PMC

Boffetta P, Kaldor JM. Secondary malignancies following cancer chemotherapy. Acta Oncol. 1994;33(6):591–598. doi: 10.3109/02841869409121767 PubMed DOI

Vega-Stromberg T. Chemotherapy-induced secondary malignancies. J Infus Nurs. 2003;26(6):353–361. doi: 10.1097/00129804-200311000-00004 PubMed DOI

Rubino C, de Vathaire F, Shamsaldin A, et al. Radiation dose, chemotherapy, hormonal treatment and risk of second cancer after breast cancer treatment. Br J Cancer. 2003;89(5):840–846. doi: 10.1038/sj.bjc.6601138 PubMed DOI PMC

Temming P, Arendt M, Viehmann A, et al. Incidence of second cancers after radiotherapy and systemic chemotherapy in heritable retinoblastoma survivors: A report from the German reference center. Pediatr Blood Cancer. 2017;64(1):71–80. doi: 10.1002/pbc.26193 PubMed DOI

Travis LB, Holowaty EJ, Bergfeldt K, et al. Risk of leukemia after platinum-based chemotherapy for ovarian cancer. N Engl J Med. 1999;340(5):351–357. doi: 10.1056/NEJM199902043400504 PubMed DOI

Kontomanolis EN, Koutras A, Syllaios A, et al. Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer Res. 2020;40(11):6009–6015. doi: 10.21873/anticanres.14622 PubMed DOI

Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018;834:188–196. doi: 10.1016/j.ejphar.2018.07.034 PubMed DOI

Sanz G, Singh M, Peuget S, et al. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol. 2019;11(7):586–599. doi: 10.1093/jmcb/mjz075 PubMed DOI PMC

Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023;22(2):127–144. doi: 10.1038/s41573-022-00571-8 PubMed DOI PMC

Wang H, Guo M, Wei H, et al. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 2023;8(92). doi: 10.1038/s41392-023-01347-1 PubMed DOI PMC

Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303(5659):844–848. doi: 10.1126/science.1092472 PubMed DOI

Neidle S. Cancer drug design and discovery. 2nd ed. Elsevier/Academic Press; 2014.

Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A. 2006;103(6):1888–1893. doi: 10.1073/pnas.0507493103 PubMed DOI PMC

Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570–575. doi: 10.1038/nature11005 PubMed DOI PMC

Vuaroqueaux V, Hendriks HR, Al-Hasani H, et al. Pharmacogenomics characterization of the MDM2 inhibitor MI-773 reveals candidate tumours and predictive biomarkers. NPJ Precis Oncol. 2021;5(1). doi: 10.1038/s41698-021-00235-7 PubMed DOI PMC

Kojima K, Konopleva M, McQueen T, et al. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood. 2006;108(3):993–1000. doi: 10.1182/blood-2005-12-5148 PubMed DOI PMC

Manfe V, Biskup E, Johansen P, et al. MDM2 inhibitor nutlin-3a induces apoptosis and senescence in cutaneous T-cell lymphoma: role of p53. J Invest Dermatol. 2012;132(5):1487–1496. doi: 10.1038/jid.2012.10 PubMed DOI

Tsao CC, Corn PG. MDM-2 antagonists induce p53-dependent cell cycle arrest but not cell death in renal cancer cell lines. Cancer Biol Ther. 2010;10(12):1315–1325. doi: 10.4161/cbt.10.12.13612 PubMed DOI

Tabe Y, Sebasigari D, Jin L, et al. MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res. 2009;15(3):933–942. doi: 10.1158/1078-0432.CCR-08-0399 PubMed DOI PMC

Hasegawa H, Yamada Y, Iha H, et al. Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells. Leukemia. 2009;23(11):2090–2101. doi: 10.1038/leu.2009.171 PubMed DOI

Drakos E, Singh RR, Rassidakis GZ, et al. Activation of the p53 pathway by the MDM2 inhibitor nutlin-3a overcomes BCL2 overexpression in a preclinical model of diffuse large B-cell lymphoma associated with t(14;18)(q32;q21). Leukemia. 2011;25(5):856–867. doi: 10.1038/leu.2011.28 PubMed DOI PMC

Saha MN, Jiang H, Chang H. Molecular mechanisms of nutlin-induced apoptosis in multiple myeloma: evidence for p53-transcription-dependent and -independent pathways. Cancer Biol Ther. 2010;10(6):567–578. doi: 10.4161/cbt.10.6.12535 PubMed DOI PMC

Saha MN, Jiang H, Mukai A, et al. RITA inhibits multiple myeloma cell growth through induction of p53-mediated caspase-dependent apoptosis and synergistically enhances nutlin-induced cytotoxic responses. Mol Cancer Ther. 2010;9(11):3041–3051. doi: 10.1158/1535-7163.MCT-10-0471 PubMed DOI

Van Maerken T, Rihani A, Dreidax D, et al. Functional analysis of the p53 pathway in neuroblastoma cells using the small-molecule MDM2 antagonist nutlin-3. Mol Cancer Ther. 2011;10(6):983–993. doi: 10.1158/1535-7163.MCT-10-1090 PubMed DOI

Villalonga-Planells R, Coll-Mulet L, Martínez-Soler F, et al. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme. PLOS ONE. 2011;6(4):e18588. doi: 10.1371/journal.pone.0018588 PubMed DOI PMC

Endo S, Yamato K, Hirai S, et al. Potent in vitro and in vivo antitumor effects of MDM2 inhibitor nutlin-3 in gastric cancer cells. Cancer Sci. 2011;102(3):605–613. doi: 10.1111/j.1349-7006.2010.01821.x PubMed DOI

Koster R, Timmer-Bosscha H, Bischoff R, et al. Disruption of the MDM2–p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis. 2011;2(4):e148. doi: 10.1038/cddis.2011.33 PubMed DOI PMC

Sonnemann J, Palani CD, Wittig S, et al. Anticancer effects of the p53 activator nutlin-3 in Ewing’s sarcoma cells. Eur J Cancer. 2011;47(9):1432–1441. doi: 10.1016/j.ejca.2011.01.015 PubMed DOI

Pishas KI, Al-Ejeh F, Zinonos I, et al. Nutlin-3a is a potential therapeutic for Ewing sarcoma. Clin Cancer Res. 2011;17(3):494–504. doi: 10.1158/1078-0432.CCR-10-1587 PubMed DOI

Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6(12):909–923. doi: 10.1038/nrc2012 PubMed DOI

Wang W, Albadari N, Du Y, et al. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev. 2024;76(3):414–453. doi: 10.1124/pharmrev.123.001026 PubMed DOI PMC

Andreeff M, Kelly KR, Yee K, et al. Results of the Phase I Trial of RG7112, a Small-Molecule MDM2 Antagonist in Leukemia. Clin Cancer Res. 2016;22(4):868–876. doi: 10.1158/1078-0432.CCR-15-0481 PubMed DOI PMC

Alaseem AM. Advancements in MDM2 inhibition: Clinical and pre-clinical investigations of combination therapeutic regimens. Saudi Pharm J. 2023;31(10):101790. doi: 10.1016/j.jsps.2023.101790 PubMed DOI PMC

de Jonge M, de Weger VA, Dickson MA, et al. A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur J Cancer. 2017;76:144–151. doi: 10.1016/j.ejca.2017.02.005 PubMed DOI

Guerlavais V, Sawyer TK, Carvajal L, et al. Discovery of Sulanemadlin (ALRN-6924), the First Cell-Permeating, Stabilized α-Helical Peptide in Clinical Development. J Med Chem. 2023;66(14):9401–9417. doi: 10.1021/acs.jmedchem.3c00623 PubMed DOI

Zawacka JE. p53 biology and reactivation for improved therapy in MDS and AML. Biomark Res. 2024;12(34). doi: 10.1186/s40364-024-00579-9 PubMed DOI PMC

Saleh MN, Patel MR, Bauer TM, et al. Phase 1 Trial of ALRN-6924, a Dual Inhibitor of MDMX and MDM2, in Patients with Solid Tumors and Lymphomas Bearing Wild-type TP53. Clin Cancer Res. 2021;27(19):5236–5247. doi: 10.1158/1078-0432.CCR-21-0715 PubMed DOI PMC

Vu B, Wovkulich P, Pizzolato G, et al. Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development. ACS Med Chem Lett. 2013;4(5):466–469. doi: 10.1021/ml4000657 PubMed DOI PMC

Ding Q, Zhang Z, Liu J-J, et al. Discovery of RG7388, a Potent and Selective p53–MDM2 Inhibitor in Clinical Development. J Med Chem. 2013;56(14):5979–5983. doi: 10.1021/jm400487c PubMed DOI

Arnhold V, Schmelz K, Proba J, et al. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget. 2018;9(2):2304–2319. doi: 10.18632/oncotarget.23409 PubMed DOI PMC

Holzer P. Discovery of Potent and Selective p53-MDM2 Protein–Protein Interaction Inhibitors as Anticancer Drugs. Chimia (Aarau). 2017;71(10):716–721. doi: 10.2533/chimia.2017.716 PubMed DOI

Holzer P, Masuya K, Furet P, et al. Discovery of a Dihydroisoquinolinone Derivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 Clinical Trials in p53wt Tumors. J Med Chem. 2015;58(16):6348–6358. doi: 10.1021/acs.jmedchem.5b00810 PubMed DOI

Fang DD, Tang Q, Kong Y, et al. MDM2 inhibitor APG-115 exerts potent antitumor activity and synergizes with standard-of-care agents in preclinical acute myeloid leukemia models. Cell Death Discov. 2021;7(1):90. doi: 10.1038/s41420-021-00465-5 PubMed DOI PMC

Sun D, Li Z, Rew Y, et al. Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2–p53 Inhibitor in Clinical Development. J Med Chem. 2014;57(4):1454–1472. doi: 10.1021/jm401753e PubMed DOI

Verstovsek S, Al-Ali HK, Mascarenhas J, et al. BOREAS: a global, phase III study of the MDM2 inhibitor navtemadlin (KRT-232) in relapsed/refractory myelofibrosis. Future Oncol. 2022;18(37):4059–4069. doi: 10.2217/fon-2022-0901 PubMed DOI

LoRusso P, Yamamoto N, Patel MR, et al. The MDM2–p53 Antagonist Brigimadlin (BI 907828) in Patients with Advanced or Metastatic Solid Tumors: Results of a Phase Ia, First-in-Human, Dose-Escalation Study. Cancer Discov. 2023;13(8):1802–1813. doi: 10.1158/2159-8290.CD-23-0153 PubMed DOI PMC

Kang MH, Reynolds CP, Kolb EA, et al. Initial Testing (Stage 1) of MK-8242—A Novel MDM2 Inhibitor—by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2016;63(10):1744–1752. doi: 10.1002/pbc.26064 PubMed DOI PMC

Bill KL, Garnett J, Meaux I, et al. SAR405838: A Novel and Potent Inhibitor of the MDM2: p53 Axis for the Treatment of Dedifferentiated Liposarcoma. Clin Cancer Res. 2016;22:1150–1160. doi: 10.1158/1078-0432.CCR-15-1522 PubMed DOI PMC

de Weger VA, de Jonge M, Langenberg MHG, et al. A phase I study of the HDM2 antagonist SAR405838 combined with the MEK inhibitor pimasertib in patients with advanced solid tumours. Br J Cancer. 2019;120(3):286–293. doi: 10.1038/s41416-018-0355-8 PubMed DOI PMC

Erba HP, Becker PS, Shami PJ, et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 2019;3(13):1939–1949. doi: 10.1182/bloodadvances.2019030916 PubMed DOI PMC

Gounder MM, Bauer TM, Schwartz GK, et al. A First-in-Human Phase I Study of Milademetan, an MDM2 Inhibitor, in Patients with Advanced Liposarcoma, Solid Tumors, or Lymphomas. JCO. 2023;41(9):1714–1724. doi: 10.1200/JCO.22.01285 PubMed DOI PMC

Li Y, Yang J, Aguilar A, et al. Discovery of MD-224 as a First-in-Class, Highly Potent, and Efficacious Proteolysis Targeting Chimera Murine Double Minute 2 Degrader Capable of Achieving Complete and Durable Tumor Regression. J Med Chem. 2019;62(2):448–466. doi: 10.1021/acs.jmedchem.8b00909 PubMed DOI PMC

Han X, Wei W, Sun Y. PROTAC Degraders with Ligands Recruiting MDM2 E3 Ubiquitin Ligase: An Updated Perspective. Acta Mater Med. 2022;1(2):244–259. doi: 10.15212/amm-2022-0010 PubMed DOI PMC

Marcellino BK, Yang X, Umit Kaniskan H, et al. An MDM2 degrader for treatment of acute leukemias. Leukemia. 2023;37(2):370–378. doi: 10.1038/s41375-022-01735-6 PubMed DOI PMC

Yee K, Papayannidis C, Vey N, et al. Murine double minute 2 inhibition alone or with cytarabine in acute myeloid leukemia: Results from an idasanutlin phase 1/1b study. Leuk Res. 2021;100:106489. doi: 10.1016/j.leukres.2020.106489 PubMed DOI

Yamamoto N, Tolcher A, Hafez N, et al. Efficacy and Safety of the MDM2–p53 Antagonist Brigimadlin (BI 907828) in Patients with Advanced Biliary Tract Cancer: A Case Series. Onco Targets Ther. 2024;17:267–280. doi: 10.2147/OTT.S440979 PubMed DOI PMC

Abed A, Greene MK, Alsa’d AA, et al. Nanoencapsulation of MDM2 Inhibitor RG7388 and Class-I HDAC Inhibitor Entinostat Enhances their Therapeutic Potential Through Synergistic Antitumor Effects and Reduction of Systemic Toxicity. Mol Pharm. 2024;21(3):1246–1255. doi: 10.1021/acs.molpharmaceut.3c00926 PubMed DOI PMC

Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–38043. doi: 10.18632/oncotarget.16723 PubMed DOI PMC

Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14(1):57–66. doi: 10.1038/nrclinonc.2016.96 PubMed DOI PMC

Schumacher D, Andrieux G, Boehnke K, et al. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures. PloS Genet. 2019;15(3):e1008076. doi: 10.1371/journal.pgen.1008076 PubMed DOI PMC

Blagih J, Buck MD, Vousden KH, et al. p53, cancer and the immune response. J Cell Sci. 2020;133(5). doi: 10.1242/jcs.237453 PubMed DOI

Tomicic MT, Dawood M, Efferth T. Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma. Cancers (Basel). 2021;13(16):4072. doi: 10.3390/cancers13164072 PubMed DOI PMC

Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer. Pharmacol Ther. 2015;149:124–138. doi: 10.1016/j.pharmthera.2014.12.001 PubMed DOI

Zheng T, Wang J, Song X, et al. Nutlin-3 cooperates with doxorubicin to induce apoptosis of human hepatocellular carcinoma cells through p53 or p73 signaling pathways. J Cancer Res Clin Oncol. 2010;136(10):1597–1604. doi: 10.1007/s00432-010-0817-8 PubMed DOI PMC

Barbieri E, Mehta P, Chen Z, et al. MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther. 2006;5(9):2358–2365. doi: 10.1158/1535-7163.MCT-06-0305 PubMed DOI

Werner LR, Huang S, Francis DM, et al. Small Molecule Inhibition of MDM2–p53 Interaction Augments Radiation Response in Human Tumors. Mol Cancer Ther. 2015;14(9):1994–2003. doi: 10.1158/1535-7163.MCT-14-1056-T PubMed DOI

Cao C, Shinohara ET, Subhawong TK, et al. Radiosensitization of lung cancer by nutlin, an inhibitor of murine double minute 2. Mol Cancer Ther. 2006;5(2):411–417. doi: 10.1158/1535-7163.MCT-05-0356 PubMed DOI

Arya AK, El-Fert A, Devling T, et al. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53. Br J Cancer. 2010;103(2):186–195. doi: 10.1038/sj.bjc.6605739 PubMed DOI PMC

Tokalov SV, Abolmaali ND. Protection of p53 wild type cells from taxol by nutlin-3 in the combined lung cancer treatment. BMC Cancer. 2010;10(1):57. doi: 10.1186/1471-2407-10-57 PubMed DOI PMC

Meijer A, Kruyt FAE, van der Zee AGJ, et al. Nutlin-3 preferentially sensitises wild-type p53-expressing cancer cells to DR5-selective TRAIL over rhTRAIL. Br J Cancer. 2013;109(10):2685–2695. doi: 10.1038/bjc.2013.636 PubMed DOI PMC

Carvajal D, Tovar C, Yang H, et al. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res. 2005;65(5):1918–1924. doi: 10.1158/0008-5472.CAN-04-3576 PubMed DOI

Kranz D, Dobbelstein M. Nongenotoxic p53 Activation Protects Cells against S-Phase–Specific Chemotherapy. Cancer Res. 2006;66(21):10274–10280. doi: 10.1158/0008-5472.CAN-06-1527 PubMed DOI

Konopleva MY, Röllig C, Cavenagh J, et al. Idasanutlin plus cytarabine in relapsed or refractory acute myeloid leukemia: results of the MIRROS trial. Blood Adv. 2022;6:4147–4156. doi: 10.1182/bloodadvances.2021006303 PubMed DOI PMC

Alfarouk KO, Stock C-M, Taylor S, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15(1). doi: 10.1186/s12935-015-0221-1 PubMed DOI PMC

Haronikova L, Bonczek O, Zatloukalova P, et al. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett. 2021;26(1). doi: 10.1186/s11658-021-00293-6 PubMed DOI PMC

Grigoreva T, Sagaidak A, Romanova A, et al. Establishment of drug-resistant cell lines under the treatment with chemicals acting through different mechanisms. Chem Biol Interact. 2021;344:109510. doi: 10.1016/j.cbi.2021.109510 PubMed DOI

Boland CR, Ricciardiello L. How many mutations does it take to make a tumor? Proc Natl Acad Sci U S A. 1999;96(26):14675–14677. doi: 10.1073/pnas.96.26.14675 PubMed DOI PMC

Martincorena I, Raine KM, Gerstung M, et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell. 2017;171(5):1029–1041 e1021. doi: 10.1016/j.cell.2017.09.042 PubMed DOI PMC

Yang J, Kang H, Lyu L, et al. A target map of clinical combination therapies in oncology: an analysis of clinicaltrials.Gov. Discov Oncol. 2023;14(1):151. doi: 10.1007/s12672-023-00758-4 PubMed DOI PMC

Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov. 2023;22(3):213–234. doi: 10.1038/s41573-022-00615-z PubMed DOI

Milazzo G, Mercatelli D, Di Muzio G, et al. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel). 2020;11(5):556. doi: 10.3390/genes11050556 PubMed DOI PMC

Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81–92. doi: 10.1038/nrg.2017.80 PubMed DOI

Chen YC, Young M-J, Chang H-P, et al. Estradiol-mediated inhibition of DNMT1 decreases p53 expression to induce M2-macrophage polarization in lung cancer progression. Oncogenesis. 2022;11(1). doi: 10.1038/s41389-022-00397-4 PubMed DOI PMC

Tatavosian R, Donovan MG, Galbraith MD, et al. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ. 2023;30(4):952–965. doi: 10.1038/s41418-023-01113-4 PubMed DOI PMC

Wang YA, Kamarova Y, Shen KC, et al. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther. 2005;4(10):1138–1143. doi: 10.4161/cbt.4.10.2073 PubMed DOI

Condorelli F, Gnemmi I, Vallario A, et al. Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br J Pharmacol. 2008;153(4):657–668. doi: 10.1038/sj.bjp.0707608 PubMed DOI PMC

Janic A, Abad E, Amelio I. Decoding p53 tumor suppression: a crosstalk between genomic stability and epigenetic control? Cell Death Differ. 2024. doi: 10.1038/s41418-024-01259-9 PubMed DOI PMC

Esteve PO, Chin HG, Pradhan S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc Natl Acad Sci U S A. 2005;102(4):1000–1005. doi: 10.1073/pnas.0407729102 PubMed DOI PMC

Harms KL, Chen X. Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res. 2007;67(7):3145–3152. doi: 10.1158/0008-5472.CAN-06-4397 PubMed DOI

Bansal N, Kadamb R, Mittal S, et al. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress. PLOS ONE. 2011;6(10):e26156. doi: 10.1371/journal.pone.0026156 PubMed DOI PMC

Panatta E, Butera A, Mammarella E, et al. Metabolic regulation by p53 prevents R-loop-associated genomic instability. Cell Rep. 2022;41(5):111568. doi: 10.1016/j.celrep.2022.111568 PubMed DOI

Hu Z, Wei F, Su Y, et al. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct Target Ther. 2023;8(1):11. doi: 10.1038/s41392-022-01221-6 PubMed DOI PMC

Shi MQ, Xu Y, Fu X, et al. Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol. 2024;17(1). doi: 10.1186/s13045-024-01551-8 PubMed DOI PMC

Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene. 2007;26(9):1351–1356. doi: 10.1038/sj.onc.1210204 PubMed DOI

Hess-Stumpp H, Bracker TU, Henderson D, et al. MS-275, a potent orally available inhibitor of histone deacetylases—The development of an anticancer agent. Int J Biochem Cell Biol. 2007;39(7–8):1388–1405. doi: 10.1016/j.biocel.2007.02.009 PubMed DOI

Darkin-Rattray SJ, Gurnett A, Myers R, et al. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA. 1996;93(23):13143–13147. doi: 10.1073/pnas.93.23.13143 PubMed DOI PMC

Palani CD, Beck JF, Sonnemann J. Histone deacetylase inhibitors enhance the anticancer activity of nutlin-3 and induce p53 hyperacetylation and downregulation of MDM2 and MDM4 gene expression. Invest New Drugs. 2012;30(1):25–36. doi: 10.1007/s10637-010-9510-7 PubMed DOI

McCormack E, Haaland I, Venås G, et al. Synergistic induction of p53 mediated apoptosis by valproic acid and nutlin-3 in acute myeloid leukemia. Leukemia. 2012;26(5):910–917. doi: 10.1038/leu.2011.315 PubMed DOI

Jenke R, Ressing N, Hansen FK, et al. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel). 2021;13(4):634. doi: 10.3390/cancers13040634 PubMed DOI PMC

Sachweh MC, Drummond CJ, Higgins M, et al. Incompatible effects of p53 and HDAC inhibition on p21 expression and cell cycle progression. Cell Death Dis. 2013;4(3):e533. doi: 10.1038/cddis.2013.61 PubMed DOI PMC

Smalley JP, Cowley SM, Hodgkinson JT. MDM2 Antagonist Idasanutlin Reduces HDAC1/2 Abundance and Corepressor Partners but Not HDAC3. ACS Med Chem Lett. 2024;15(1):93–98. doi: 10.1021/acsmedchemlett.3c00449 PubMed DOI PMC

Kwon DH, Eom GH, Ko JH, et al. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification. Nat Commun. 2016;7(1):10492. doi: 10.1038/ncomms10492 PubMed DOI PMC

Zhao Q, Xiong S-S, Chen C, et al. Discovery of spirooxindole-derived small-molecule compounds as novel HDAC/MDM2 dual inhibitors and investigation of their anticancer activity. Front Oncol. 2022;12:972372. doi: 10.3389/fonc.2022.972372 PubMed DOI PMC

Fischer M, Sammons MA. Determinants of p53 DNA binding, gene regulation, and cell fate decisions. Cell Death Differ. 2024;31(7):836–843. doi: 10.1038/s41418-024-01326-1 PubMed DOI PMC

Vishnoi K, Viswakarma N, Rana A, et al. Transcription Factors in Cancer Development and Therapy. Cancers (Basel). 2020;12(8):2296. doi: 10.3390/cancers12082296 PubMed DOI PMC

Lin HK, Wang L, Hu YC, et al. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. Embo J. 2002;21(15):4037–4048. doi: 10.1093/emboj/cdf406 PubMed DOI PMC

Gaughan L, Logan IR, Neal DE, et al. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res. 2005;33(1):13–26. doi: 10.1093/nar/gki141 PubMed DOI PMC

Khatiwada P, Rimal U, Han Z, et al. MDM2 regulates the stability of AR, AR-V7, and TM4SF3 proteins in prostate cancer. Endocr Oncol. 2024;4(1):e230017. doi: 10.1530/EO-23-0017 PubMed DOI PMC

Tovar C, Higgins B, Kolinsky K, et al. MDM2 antagonists boost antitumor effect of androgen withdrawal: implications for therapy of prostate cancer. Mol Cancer. 2011;10(1):49. doi: 10.1186/1476-4598-10-49 PubMed DOI PMC

Vummidi Giridhar P, Williams K, VonHandorf AP, et al. Constant Degradation of the Androgen Receptor by MDM2 Conserves Prostate Cancer Stem Cell Integrity. Cancer Res. 2019;79(6):1124–1137. doi: 10.1158/0008-5472.CAN-18-1753 PubMed DOI PMC

Wang Y, Minden A. Current Molecular Combination Therapies Used for the Treatment of Breast Cancer. Int J Mol Sci. 2022;23(19):11046. doi: 10.3390/ijms231911046 PubMed DOI PMC

Liu W, Konduri SD, Bansal S, et al. Estrogen Receptor-α Binds p53 Tumor Suppressor Protein Directly and Represses Its Function. J Biol Chem. 2006;281(15):9837–9840. doi: 10.1074/jbc.C600001200 PubMed DOI

Nathan MR, Schmid P. A Review of Fulvestrant in Breast Cancer. Oncol Ther. 2017;5(1):17–29. doi: 10.1007/s40487-017-0046-2 PubMed DOI PMC

Portman N, Milioli HH, Alexandrou S, et al. MDM2 inhibition in combination with endocrine therapy and CDK4/6 inhibition for the treatment of er-positive breast cancer. Breast Cancer Res. 2020;22(1):87. doi: 10.1186/s13058-020-01318-2 PubMed DOI PMC

Natarajan K, Singh S, Burke TR, Jr. et al. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor nf-kappa B. Proc Natl Acad Sci USA. 1996;93(17):9090–9095. doi: 10.1073/pnas.93.17.9090 PubMed DOI PMC

Dow LF, Case AM, Paustian MP, et al. The evolution of small molecule enzyme activators. RSC Med Chem. 2023;14(11):2206–2230. doi: 10.1039/d3md00399j PubMed DOI PMC

Mukund AX, Tycko J, Allen SJ, et al. High-throughput functional characterization of combinations of transcriptional activators and repressors. Cell Syst. 2023;14(9):746–763 e745. doi: 10.1016/j.cels.2023.07.001 PubMed DOI PMC

Plotnikova O, Baranova A, Skoblov M. Comprehensive Analysis of Human microRNA-mRNA Interactome. Front Genet. 2019;10:933. doi: 10.3389/fgene.2019.00933 PubMed DOI PMC

Wu HH, Leng S, Sergi C, et al. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci. 2024;25(11):5865. doi: 10.3390/ijms25115865 PubMed DOI PMC

Kalfert D, Ludvikova M, Pesta M, et al. Multifunctional Roles of miR-34a in Cancer: A Review with the Emphasis on Head and Neck Squamous Cell Carcinoma and Thyroid Cancer with Clinical Implications. Diagnostics (Basel). 2020;10(8):563. doi: 10.3390/diagnostics10080563 PubMed DOI PMC

Cui SY, Wang R, Chen LB. MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways. J Cell Mol Med. 2014;18(10):1913–1926. doi: 10.1111/jcmm.12358 PubMed DOI PMC

Turco C, Donzelli S, Fontemaggi G. miR-15/107 microRNA Gene Group: Characteristics and Functional Implications in Cancer. Front Cell Dev Biol. 2020;8:427. doi: 10.3389/fcell.2020.00427 PubMed DOI PMC

Mishan MA, Tabari MAK, Parnian J, et al. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer. 2020;59(12):722–735. doi: 10.1002/gcc.22889 PubMed DOI

Vychytilova-Faltejskova P, Merhautova J, Machackova T, et al. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis. 2017;6(11):399. doi: 10.1038/s41389-017-0006-6 PubMed DOI PMC

Vychytilova-Faltejskova P, Slaby O. MicroRNA-215: From biology to theranostic applications. Mol Aspects Med. 2019;70:72–89. doi: 10.1016/j.mam.2019.03.002 PubMed DOI

Chen PS, Su J-L, Cha S-T, et al. miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans. J Clin Invest. 2017;127(3):1116. doi: 10.1172/JCI92099 PubMed DOI PMC

Erhard F, Haas J, Lieber D, et al. Widespread context dependency of microRNA-mediated regulation. Genome Res. 2014;24(6):906–919. doi: 10.1101/gr.166702.113 PubMed DOI PMC

Capaccia C, Diverio S, Zampini D, et al. The Complex Interaction between P53 and miRNAs Joins New Awareness in Physiological Stress Responses. Cells. 2022;11(10):1631. doi: 10.3390/cells11101631 PubMed DOI PMC

Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci. 2024;25(3):1469. doi: 10.3390/ijms25031469 PubMed DOI PMC

Tian Z, Liang G, Cui K, et al. Insight into the Prospects for RNAi Therapy of Cancer. Front Pharmacol. 2021;12:644718. doi: 10.3389/fphar.2021.644718 PubMed DOI PMC

Bryant A, Palma CA, Jayaswal V, et al. miR-10a is aberrantly overexpressed in Nucleophosmin1 mutated acute myeloid leukaemia and its suppression induces cell death. Mol Cancer. 2012;11(1). doi: 10.1186/1476-4598-11-8 PubMed DOI PMC

Vu TT, Stölzel F, Wang KW, et al. miR-10a as a therapeutic target and predictive biomarker for MDM2 inhibition in acute myeloid leukemia. Leukemia. 2021;35(7):1933–1948. doi: 10.1038/s41375-020-01095-z PubMed DOI PMC

Andrysik Z, Kim J, Tan AC, et al. A genetic screen identifies TCF3/E2A and TRIAP1 as pathway-specific regulators of the cellular response to p53 activation. Cell Rep. 2013;3(5):1346–1354. doi: 10.1016/j.celrep.2013.04.014 PubMed DOI PMC

Shamas-Din A, Brahmbhatt H, Leber B, et al. BH3-only proteins: Orchestrators of apoptosis. Biochim Biophys Acta. 2011;1813(4):508–520. doi: 10.1016/j.bbamcr.2010.11.024 PubMed DOI

Herting F, Friess T, Umana P, et al. Chemotherapy-free, triple combination of obinutuzumab, venetoclax and idasanutlin: antitumor activity in xenograft models of non-Hodgkin lymphoma. Leuk Lymphoma. 2018;59(6):1482–1485. doi: 10.1080/10428194.2017.1376740 PubMed DOI

Chen L, He J, Zhou J, et al. EIF2A promotes cell survival during paclitaxel treatment in vitro and in vivo. J Cell Mol Med. 2019;23(9):6060–6071. doi: 10.1111/jcmm.14469 PubMed DOI PMC

von Roemeling CA, Wang Y, Qie Y, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11(1):1508. doi: 10.1038/s41467-020-15129-8 PubMed DOI PMC

Kaina B. Temozolomide in Glioblastoma Therapy: Role of Apoptosis, Senescence and Autophagy. Comment on Strobel et al. Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines 2019, 7, 69. Biomedicines. 2019;7(4):90. doi: 10.3390/biomedicines7040090 PubMed DOI PMC

Strobel H, Baisch T, Fitzel R, et al. Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines. 2019;7(3):69. doi: 10.3390/biomedicines7030069 PubMed DOI PMC

Lee S, Jee H-Y, Lee Y-G, et al. PKR-Mediated Phosphorylation of eIf2a and CHK1 is Associated with Doxorubicin-Mediated Apoptosis in HCC1143 Triple-Negative Breast Cancer Cells. Int J Mol Sci. 2022;23(24):15872. doi: 10.3390/ijms232415872 PubMed DOI PMC

De Gassart A, Bujisic B, Zaffalon L, et al. An inhibitor of HIV-1 protease modulates constitutive eIf2α dephosphorylation to trigger a specific integrated stress response. Proc Natl Acad Sci U S A. 2016;113(2):E117–126. doi: 10.1073/pnas.1514076113 PubMed DOI PMC

Boyce M, Bryant KF, Jousse C, et al. A Selective Inhibitor of eIf2α Dephosphorylation Protects Cells from ER Stress. Science. 2005;307(5711):935–939. doi: 10.1126/science.1101902 PubMed DOI

Jeon YJ, Kim JH, Shin J-I, et al. Salubrinal-Mediated Upregulation of eIf2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells. Mol Cells. 2016;39(2):129–135. doi: 10.14348/molcells.2016.2243 PubMed DOI PMC

Cao X, Dang L, Zheng X, et al. Targeting Super-Enhancer-Driven Oncogenic Transcription by CDK7 Inhibition in Anaplastic Thyroid Carcinoma. Thyroid. 2019;29(6):809–823. doi: 10.1089/thy.2018.0550 PubMed DOI

Gardner SL, Tarapore RS, Allen J, et al. Phase I dose escalation and expansion trial of single agent ONC201 in pediatric diffuse midline gliomas following radiotherapy. Neurooncol Adv. 2022;4, vdac143 (1). doi: 10.1093/noajnl/vdac143 PubMed DOI PMC

Wagner J, Kline CL, Zhou L, et al. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms. J Exp Clin Cancer Res. 2018;37(1):11. doi: 10.1186/s13046-018-0671-0 PubMed DOI PMC

Vaklavas C, Blume SW, Grizzle WE. Translational Dysregulation in Cancer: Molecular Insights and Potential Clinical Applications in Biomarker Development. Front Oncol. 2017;7:158. doi: 10.3389/fonc.2017.00158 PubMed DOI PMC

Tameire F, Verginadis II, Leli NM, et al. ATF4 couples myc-dependent translational activity to bioenergetic demands during tumour progression. Nat Cell Biol. 2019;21(7):889–899. doi: 10.1038/s41556-019-0347-9 PubMed DOI PMC

McConkey DJ. The integrated stress response and proteotoxicity in cancer therapy. Biochem Biophys Res Commun. 2017;482(3):450–453. doi: 10.1016/j.bbrc.2016.11.047 PubMed DOI PMC

Holcik M. Could the eIf2alpha-Independent Translation Be the Achilles Heel of Cancer? Front Oncol. 2015;5:264. doi: 10.3389/fonc.2015.00264 PubMed DOI PMC

Tian X, Zhang S, Zhou L, et al. Targeting the Integrated Stress Response in Cancer Therapy. Front Pharmacol. 2021;12:747837. doi: 10.3389/fphar.2021.747837 PubMed DOI PMC

Licari E, Sanchez-Del-Campo L, Falletta P. The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies. Int J Biochem Cell Biol. 2021;139:106059. doi: 10.1016/j.biocel.2021.106059 PubMed DOI

Lees A, Sessler T, McDade S. Dying to Survive—The p53 Paradox. Cancers (Basel). 2021;13(13):3257. doi: 10.3390/cancers13133257 PubMed DOI PMC

Pakos-Zebrucka K, Koryga I, Mnich K, et al. The integrated stress response. EMBO Rep. 2016;17(10):1374–1395. doi: 10.15252/embr.201642195 PubMed DOI PMC

Carrara M, Sigurdardottir A, Bertolotti A. Decoding the selectivity of eIf2α holophosphatases and PPP1R15A inhibitors. Nat Struct Mol Biol. 2017;24(9):708–716. doi: 10.1038/nsmb.3443 PubMed DOI PMC

Fullwood MJ, Zhou W, Shenolikar S. Targeting phosphorylation of eukaryotic initiation factor-2alpha to treat human disease. Prog Mol Biol Transl Sci. 2012;106:75–106. doi: 10.1016/B978-0-12-396456-4.00005-5 PubMed DOI

Perry CM, Frampton JE, McCormack PL, et al. Nelfinavir: a review of its use in the management of HIV infection. Drugs. 2005;65(15):2209–2244. doi: 10.2165/00003495-200565150-00015 PubMed DOI

Soave CL, Guerin T, Liu J, et al. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev. 2017;36(4):717–736. doi: 10.1007/s10555-017-9705-x PubMed DOI PMC

Yang J, Shay C, Saba NF, et al. Cancer metabolism and carcinogenesis. Exp Hematol Oncol. 2024;13(10). doi: 10.1186/s40164-024-00482-x PubMed DOI PMC

Crawford LJ, Walker B, Irvine AE. Proteasome inhibitors in cancer therapy. J Cell Commun Signal. 2011;5(2):101–110. doi: 10.1007/s12079-011-0121-7 PubMed DOI PMC

Xue Y, Barker N, Hoon S, et al. Bortezomib Stabilizes and Activates p53 in Proliferative Compartments of Both Normal and Tumor Tissues in vivo. Cancer Res. 2019;79(14):3595–3607. doi: 10.1158/0008-5472.CAN-18-3744 PubMed DOI

Lopes UG, Erhardt P, Yao R, et al. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem. 1997;272(20):12893–12896. doi: 10.1074/jbc.272.20.12893 PubMed DOI

Okuda S, Yamada T, Hamajima M, et al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 2008;36(Web Server):W423–W426. doi: 10.1093/nar/gkn282 PubMed DOI PMC

Eyre TA, Ducluzeau F, Sneddon TP, et al. The HUGO Gene Nomenclature Database, 2006 updates. Nucleic Acids Res. 2006;34(90001):D319–D321. doi: 10.1093/nar/gkj147 PubMed DOI PMC

Motosugi R, Murata S. Dynamic Regulation of Proteasome Expression. Front Mol Biosci. 2019;6(30). doi: 10.3389/fmolb.2019.00030 PubMed DOI PMC

Obeng EA, Carlson LM, Gutman DM, et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107(12):4907–4916. doi: 10.1182/blood-2005-08-3531 PubMed DOI PMC

Read A, Schroder M. The Unfolded Protein Response: An Overview. Biology (Basel). 2021;10(5):384. doi: 10.3390/biology10050384 PubMed DOI PMC

Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin–Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel). 2020;12(4):902. doi: 10.3390/cancers12040902 PubMed DOI PMC

Teicher BA, Ara G, Herbst R, et al. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res. 1999;5(9):2638–2645. PubMed

Saha MN, Jiang H, Jayakar J, et al. MDM2 antagonist nutlin plus proteasome inhibitor velcade combination displays a synergistic anti-myeloma activity. Cancer Biol Ther. 2010;9(11):936–944. doi: 10.4161/cbt.9.11.11882 PubMed DOI

Kuhn DJ, Chen Q, Voorhees PM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110(9):3281–3290. doi: 10.1182/blood-2007-01-065888 PubMed DOI PMC

Ludwig MP, Galbraith MD, Eduthan NP, et al. Proteasome Inhibition Sensitizes Liposarcoma to MDM2 Inhibition with Nutlin-3 by Activating the ATF4/CHOP Stress Response Pathway. Cancer Res. 2023;83(15):2543–2556. doi: 10.1158/0008-5472.CAN-22-3173 PubMed DOI PMC

Jin L, Tabe Y, Kojima K, et al. MDM2 antagonist Nutlin-3 enhances bortezomib-mediated mitochondrial apoptosis in TP53-mutated mantle cell lymphoma. Cancer Lett. 2010;299(2):161–170. doi: 10.1016/j.canlet.2010.08.015 PubMed DOI

Lee DM, Kim IY, Seo MJ, et al. Nutlin-3 enhances the bortezomib sensitivity of p53-defective cancer cells by inducing paraptosis. Exp Mol Med. 2017;49(8):e365. doi: 10.1038/emm.2017.112 PubMed DOI PMC

Fricker LD. Proteasome Inhibitor Drugs. Annu Rev Pharmacol Toxicol. 2020;60(1):457–476. doi: 10.1146/annurev-pharmtox-010919-023603 PubMed DOI

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417. doi: 10.1038/s41571-020-0341-y PubMed DOI PMC

Mohammad RM, Muqbil I, Lowe L, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35(Suppl):S78–S103. doi: 10.1016/j.semcancer.2015.03.001 PubMed DOI PMC

Jan R, Chaudhry GE. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull. 2019;9(2):205–218. doi: 10.15171/apb.2019.024 PubMed DOI PMC

Deng D, Shah K. TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer. 2020;6(12):989–1001. doi: 10.1016/j.trecan.2020.06.006 PubMed DOI PMC

Snajdauf M, Havlova K, Vachtenheim J, et al. The TRAIL in the Treatment of Human Cancer: An Update on Clinical Trials. Front Mol Biosci. 2021;8:628332. doi: 10.3389/fmolb.2021.628332 PubMed DOI PMC

Secchiero P, Zerbinati C, Grazia di Iasio M, et al. Synergistic cytotoxic activity of recombinant TRAIL plus the non-genotoxic activator of the p53 pathway nutlin-3 in acute myeloid leukemia cells. Curr Drug Metab. 2007;8(4):395–403. doi: 10.2174/138920007780655432 PubMed DOI

Hori T, Kondo T, Kanamori M, et al. Nutlin-3 enhances tumor necrosis factor-related apoptosis-inducing ligand (trail)-induced apoptosis through up-regulation of death receptor 5 (DR5) in human sarcoma HOS cells and human colon cancer HCT116 cells. Cancer Lett. 2010;287(1):98–108. doi: 10.1016/j.canlet.2009.06.002 PubMed DOI

Muret J, Hasmim M, Stasik I, et al. Attenuation of Soft-Tissue Sarcomas Resistance to the Cytotoxic Action of tnf-α by Restoring p53 Function. PLOS ONE. 2012;7(6):e38808. doi: 10.1371/journal.pone.0038808 PubMed DOI PMC

Lasut-Szyszka B, Gdowicz-Klosok A, Krzesniak M, et al. Strong activation of p53 by actinomycin D and nutlin-3a overcomes the resistance of cancer cells to the pro-apoptotic activity of the FAS ligand. Apoptosis. 2024. doi: 10.1007/s10495-024-02000-0 PubMed DOI PMC

Arai S, Jonas O, Whitman MA, et al. Tyrosine Kinase Inhibitors Increase MCL1 Degradation and in Combination with BCLXL/BCL2 Inhibitors Drive Prostate Cancer Apoptosis. Clin Cancer Res. 2018;24(21):5458–5470. doi: 10.1158/1078-0432.CCR-18-0549 PubMed DOI PMC

Faber AC, Corcoran RB, Ebi H, et al. BIM Expression in Treatment-Naïve Cancers Predicts Responsiveness to Kinase Inhibitors. Cancer Discov. 2011;1(4):352–365. doi: 10.1158/2159-8290.CD-11-0106 PubMed DOI PMC

Ley R, Balmanno K, Hadfield K, et al. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem. 2003;278(21):18811–18816. doi: 10.1074/jbc.M301010200 PubMed DOI

Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–241. doi: 10.1016/s0092-8674(00)80405-5 PubMed DOI

Lasica M, Anderson MA. Review of Venetoclax in CLL, AML and Multiple Myeloma. J Pers Med. 2021;11(6):463. doi: 10.3390/jpm11060463 PubMed DOI PMC

Lehmann C, Friess T, Birzele F, et al. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models. J Hematol Oncol. 2016;9(1):50. doi: 10.1186/s13045-016-0280-3 PubMed DOI PMC

Van Goethem A, Yigit N, Moreno-Smith M, et al. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma. Oncotarget. 2017;8(34):57047–57057. doi: 10.18632/oncotarget.18982 PubMed DOI PMC

Vernooij L, Bate-Eya LT, Alles LK, et al. High-Throughput Screening Identifies Idasanutlin as a Resensitizing Drug for Venetoclax-Resistant Neuroblastoma Cells. Mol Cancer Ther. 2021;20(6):1161–1172. doi: 10.1158/1535-7163.MCT-20-0666 PubMed DOI PMC

Daver NG, Dail M, Garcia JS, et al. Venetoclax and idasanutlin in relapsed/refractory AML: a nonrandomized, open-label phase 1b trial. Blood. 2023;141(11):1265–1276. doi: 10.1182/blood.2022016362 PubMed DOI PMC

Mohamad Anuar NN, Nor Hisam NS, Liew SL, et al. Clinical Review: Navitoclax as a Pro-Apoptotic and Anti-Fibrotic Agent. Front Pharmacol. 2020;11:564108. doi: 10.3389/fphar.2020.564108 PubMed DOI PMC

Johansson KB, Zimmerman MS, Dmytrenko IV, et al. Idasanutlin and navitoclax induce synergistic apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia. 2023;37(12):2356–2366. doi: 10.1038/s41375-023-02057-x PubMed DOI PMC

Bell HL, Blair HJ, Jepson Gosling SJ, et al. Combination p53 activation and bcl-x(L)/BCL-2 inhibition as a therapeutic strategy in high-risk and relapsed acute lymphoblastic leukemia. Leukemia. 2024;38(6):1223–1235. doi: 10.1038/s41375-024-02241-7 PubMed DOI PMC

Deng J, Paulus A, Fang DD, et al. Lisaftoclax (APG-2575) is a Novel BCL-2 Inhibitor with Robust Antitumor Activity in Preclinical Models of Hematologic Malignancy. Clin Cancer Res. 2022;28(24):5455–5468. doi: 10.1158/1078-0432.CCR-21-4037 PubMed DOI

Zhang X, Wen X, Peng R, et al. A first-in-human phase I study of a novel MDM2/p53 inhibitor alrizomadlin in advanced solid tumors. ESMO Open. 2024;9(8):103636. doi: 10.1016/j.esmoop.2024.103636 PubMed DOI PMC

Carter BZ, Mak DH, Schober WD, et al. Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood. 2010;115(2):306–314. doi: 10.1182/blood-2009-03-212563 PubMed DOI PMC

Katragadda L, Carter BZ, Borthakur G. XIAP antisense therapy with AEG 35156 in acute myeloid leukemia. Expert Opin Investig Drugs. 2013;22(5):663–670. doi: 10.1517/13543784.2013.789498 PubMed DOI

Benetatos CA, Mitsuuchi Y, Burns JM, et al. Birinapant (TL32711), a Bivalent SMAC Mimetic, Targets TRAF2-Associated cIaps, Abrogates TNF-Induced nf-κB Activation, and is Active in Patient-Derived Xenograft Models. Mol Cancer Ther. 2014;13(4):867–879. doi: 10.1158/1535-7163.MCT-13-0798 PubMed DOI

Abbas R, Larisch S. Targeting XIAP for Promoting Cancer Cell Death—The Story of ARTS and SMAC. Cells. 2020;9(3):663. doi: 10.3390/cells9030663 PubMed DOI PMC

Yaacoub K, Pedeux R, Lafite P, et al. The Identification of New c-flip Inhibitors for Restoring Apoptosis in TRAIL-Resistant Cancer Cells. Curr Issues Mol Biol. 2024;46(1):710–728. doi: 10.3390/cimb46010046 PubMed DOI PMC

Lees A, McIntyre AJ, Crawford NT, et al. The pseudo-caspase FLIP(L) regulates cell fate following p53 activation. Proc Natl Acad Sci U S A. 2020;117(30):17808–17819. doi: 10.1073/pnas.2001520117 PubMed DOI PMC

Apontes P, Leontieva OV, Demidenko ZN, et al. Exploring long-term protection of normal human fibroblasts and epithelial cells from chemotherapy in cell culture. Oncotarget. 2011;2(3):222–233. doi: 10.18632/oncotarget.248 PubMed DOI PMC

Zauli G, Rimondi E, Corallini F, et al. MDM2 antagonist Nutlin-3 suppresses the proliferation and differentiation of human pre-osteoclasts through a p53-dependent pathway. J Bone Miner Res. 2007;22(10):1621–1630. doi: 10.1359/jbmr.070618 PubMed DOI

Huang B, Deo D, Xia M, et al. Pharmacologic p53 activation blocks cell cycle progression but fails to induce senescence in epithelial cancer cells. Mol Cancer Res. 2009;7(9):1497–1509. doi: 10.1158/1541-7786.MCR-09-0144 PubMed DOI

Brandt EB, Li X, Nelson TJ. Activation of P53 via Nutlin-3a Reveals Role for P53 in ROS Signaling During Cardiac Differentiation of hiPSCs. J STEM Cell Rep. 2021;3(1). PubMed PMC

Maimets T, Neganova I, Armstrong L, et al. Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells. Oncogene. 2008;27(40):5277–5287. doi: 10.1038/onc.2008.166 PubMed DOI

Galbraith MD, Bender H, Espinosa JM. Therapeutic targeting of transcriptional cyclin-dependent kinases. Transcription. 2019;10(2):118–136. doi: 10.1080/21541264.2018.1539615 PubMed DOI PMC

Espinosa JM. Transcriptional CDKs in the spotlight. Transcription. 2019;10(2):45–46. doi: 10.1080/21541264.2019.1597479 PubMed DOI PMC

Hassanzadeh A, Shomali N, Kamrani A, et al. Cancer therapy by cyclin-dependent kinase inhibitors (CDKIs): bench to bedside. Excli J. 2024;23:862–882. doi: 10.17179/excli2024-7076 PubMed DOI PMC

Liu Y, Fu L, Wu J, et al. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy. Eur J Med Chem. 2022;229:114056. doi: 10.1016/j.ejmech.2021.114056 PubMed DOI

Mughal MJ, Bhadresha K, Kwok HF. CDK inhibitors from past to present: A new wave of cancer therapy. Semin Cancer Biol. 2023;88:106–122. doi: 10.1016/j.semcancer.2022.12.006 PubMed DOI

Cicenas J, Simkus J. CDK Inhibitors and FDA: Approved and Orphan. Cancers (Basel). 2024;16(8):1555. doi: 10.3390/cancers16081555 PubMed DOI PMC

Paprskarova M, Kryštof V, Jorda R, et al. Functional p53 in cells contributes to the anticancer effect of the cyclin-dependent kinase inhibitor roscovitine. J Cell Biochem. 2009;107(3):428–437. doi: 10.1002/jcb.22139 PubMed DOI

Mad’arova J, Lukesova M, Hlobilkova A, et al. Synthetic inhibitors of CDKs induce different responses in androgen sensitive and androgen insensitive prostatic cancer cell lines. Mol Pathol. 2002;55(4):227–234. doi: 10.1136/mp.55.4.227 PubMed DOI PMC

Fernandez-Aroca DM, Roche O, Sabater S, et al. P53 pathway is a major determinant in the radiosensitizing effect of Palbociclib: Implication in cancer therapy. Cancer Lett. 2019;451:23–33. doi: 10.1016/j.canlet.2019.02.049 PubMed DOI

Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–1438. doi: 10.1158/1535-7163.1427.3.11 PubMed DOI

Sriraman A, Dickmanns A, Najafova Z, et al. CDK4 inhibition diminishes p53 activation by MDM2 antagonists. Cell Death Dis. 2018;9(9):918. doi: 10.1038/s41419-018-0968-0 PubMed DOI PMC

Germa C, Miller M, Mukhopadhyay P, et al. Discovery and development of novel therapies in advanced breast cancer: rapid development of ribociclib. Ann Oncol. 2017;28(8):2021–2024. doi: 10.1093/annonc/mdx226 PubMed DOI PMC

Vilgelm AE, Saleh N, Shattuck-Brandt R, et al. MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21. Sci Transl Med. 2019;11(505). doi: 10.1126/scitranslmed.aav7171 PubMed DOI PMC

Schubert NA, Schild L, van Oirschot S, et al. Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses. Eur J Cancer. 2021;142:1–9. doi: 10.1016/j.ejca.2020.10.009 PubMed DOI

Novartis . NCT02343172 - CHDM201X2103C. 2019. Available from: https://www.novctrd.com/ctrdweb/trialresult/trialresults/pdf?trialResultId=17708

Ba Y, Shi Y, Jiang W, et al. Current management of chemotherapy-induced neutropenia in adults: key points and new challenges: Committee of Neoplastic Supportive-Care (CONS), China Anti-Cancer Association Committee of Clinical Chemotherapy, China Anti-Cancer Association. Cancer Biol Med. 2020;17(4):896–909. doi: 10.20892/j.issn.2095-3941.2020.0069 PubMed DOI PMC

Kuter DJ. Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica. 2022;107(6):1243–1263. doi: 10.3324/haematol.2021.279512 PubMed DOI PMC

Stetkova M, Growková K, Fojtík P, et al. CDK9 activity is critical for maintaining MDM4 overexpression in tumor cells. Cell Death Dis. 2020;11(9):754. doi: 10.1038/s41419-020-02971-3 PubMed DOI PMC

Kovalova M, Havlíček L, Djukic S, et al. Characterization of new highly selective pyrazolo[4,3-d]pyrimidine inhibitor of CDK7. Biomed Pharmacother. 2023;161:114492. doi: 10.1016/j.biopha.2023.114492 PubMed DOI

Kovalova M, Baraka JP, Mik V, et al. A patent review of cyclin-dependent kinase 7 (CDK7) inhibitors (2018–2022). Expert Opin Ther Pat. 2023;33(2):67–87. doi: 10.1080/13543776.2023.2195547 PubMed DOI

Zhang M, Zhang L, Hei R, et al. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. 2021;11(5):1913–1935. PubMed PMC

Malarikova D, Jorda R, Kupcova K, et al. Cyclin dependent kinase 4/6 inhibitor palbociclib synergizes with BCL2 inhibitor venetoclax in experimental models of mantle cell lymphoma without RB1 deletion. Exp Hematol Oncol. 2024;13(1). doi: 10.1186/s40164-024-00499-2 PubMed DOI PMC

Yu L, Wu M, Zhu G, et al. Emerging Roles of the Tumor Suppressor p53 in Metabolism. Front Cell Dev Biol. 2021;9:762742. doi: 10.3389/fcell.2021.762742 PubMed DOI PMC

Labuschagne CF, Zani F, Vousden KH. Control of metabolism by p53 – Cancer and beyond. Biochim Biophys Acta Rev Cancer. 2018;1870(1):32–42. doi: 10.1016/j.bbcan.2018.06.001 PubMed DOI PMC

Kim SY. Cancer Energy Metabolism: Shutting Power off Cancer Factory. Biomol Ther (Seoul). 2018;26(1):39–44. doi: 10.4062/biomolther.2017.184 PubMed DOI PMC

Faubert B, Li KY, Cai L, et al. Lactate Metabolism in Human Lung Tumors. Cell. 2017;171(2):358–371 e359. doi: 10.1016/j.cell.2017.09.019 PubMed DOI PMC

Puzio-Kuter AM. The Role of p53 in Metabolic Regulation. Genes Cancer. 2011;2(4):385–391. doi: 10.1177/1947601911409738 PubMed DOI PMC

Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–120. doi: 10.1016/j.cell.2006.05.036 PubMed DOI

Huang Y, Xiong C, Wang C, et al. p53-responsive CMBL reprograms glucose metabolism and suppresses cancer development by destabilizing phosphofructokinase PFKP. Cell Rep. 2023;42(11):113426. doi: 10.1016/j.celrep.2023.113426 PubMed DOI

Zhang C, Liu J, Wu R, et al. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget. 2014;5(14):5535–5546. doi: 10.18632/oncotarget.2137 PubMed DOI PMC

Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep. 2014;8(5):1461–1474. doi: 10.1016/j.celrep.2014.07.053 PubMed DOI PMC

Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64(7):2627–2633. doi: 10.1158/0008-5472.can-03-0846 PubMed DOI

Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat Cell Biol. 2008;10(5):611–618. doi: 10.1038/ncb1724 PubMed DOI

Ben Sahra I, Laurent K, Giuliano S, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010;70(6):2465–2475. doi: 10.1158/0008-5472.CAN-09-2782 PubMed DOI

Galbraith MD, Andrysik Z, Pandey A, et al. CDK8 Kinase Activity Promotes Glycolysis. Cell Rep. 2017;21(6):1495–1506. doi: 10.1016/j.celrep.2017.10.058 PubMed DOI PMC

Mai WX, Gosa L, Daniels VW, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23(11):1342–1351. doi: 10.1038/nm.4418 PubMed DOI PMC

Pernicova I, Korbonits M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–156. doi: 10.1038/nrendo.2013.256 PubMed DOI

Shimazu K, Tada Y, Morinaga T, et al. Metformin produces growth inhibitory effects in combination with nutlin-3a on malignant mesothelioma through a cross-talk between mTOR and p53 pathways. BMC Cancer. 2017;17(1):309. doi: 10.1186/s12885-017-3300-y PubMed DOI PMC

Cui Y, Zhou J, Rong F. Combination of metformin and RG7388 enhances inhibition of growth and induction of apoptosis of ovarian cancer cells through the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun. 2020;533(4):665–671. doi: 10.1016/j.bbrc.2020.09.135 PubMed DOI

Gnanapradeepan K, Basu S, Barnoud T, et al. The p53 Tumor Suppressor in the Control of Metabolism and Ferroptosis. Front Endocrinol (Lausanne). 2018;9:124. doi: 10.3389/fendo.2018.00124 PubMed DOI PMC

Wang ZP, Tian Y, Lin J. Role of wild-type p53-induced phosphatase 1 in cancer. Oncol Lett. 2017;14(4):3893–3898. doi: 10.3892/ol.2017.6685 PubMed DOI PMC

Liu B, Xiao J, Dong M, et al. Human alkaline ceramidase 2 promotes the growth, invasion, and migration of hepatocellular carcinoma cells via sphingomyelin phosphodiesterase acid-like 3B. Cancer Sci. 2020;111(7):2259–2274. doi: 10.1111/cas.14453 PubMed DOI PMC

Xu R, Garcia-Barros M, Wen S, et al. Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ. 2018;25:841–856. doi: 10.1038/s41418-017-0018-y PubMed DOI PMC

Zhang S, Huang P, Dai H, et al. TIMELESS regulates sphingolipid metabolism and tumor cell growth through Sp1/ACER2/S1P axis in er-positive breast cancer. Cell Death Dis. 2020;11(10):892. doi: 10.1038/s41419-020-03106-4 PubMed DOI PMC

Brekke RS, Gravdal A, El Jellas K, et al. Common single-base insertions in the VNTR of the carboxyl ester lipase (CEL) gene are benign and also likely to arise somatically in the exocrine pancreas. Hum Mol Genet. 2024;33(11):1001–1014. doi: 10.1093/hmg/ddae034 PubMed DOI PMC

Shen J, Tsoi H, Liang Q, et al. Oncogenic mutations and dysregulated pathways in obesity-associated hepatocellular carcinoma. Oncogene. 2016;35(49):6271–6280. doi: 10.1038/onc.2016.162 PubMed DOI PMC

Sanchez-Macedo N, Feng J, Faubert B, et al. Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ. 2013;20(4):659–668. doi: 10.1038/cdd.2012.168 PubMed DOI PMC

Assaily W, Rubinger D, Wheaton K, et al. Ros-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell. 2011;44(3):491–501. doi: 10.1016/j.molcel.2011.08.038 PubMed DOI

Finck BN, Gropler MC, Chen Z, et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metab. 2006;4(3):199–210. doi: 10.1016/j.cmet.2006.08.005 PubMed DOI

Terry AR, Hay N. Emerging targets in lipid metabolism for cancer therapy. Trends Pharmacol Sci. 2024;45(6):537–551. doi: 10.1016/j.tips.2024.04.007 PubMed DOI PMC

Miao R, Xu X, Wang Z, et al. Synergistic effect of nutlin-3 combined with aspirin in hepatocellular carcinoma HepG2 cells through activation of Bcl-2/Bax signaling pathway. Mol Med Rep. 20182017;17:3735–3743. doi: 10.3892/mmr.2017.8346 PubMed DOI PMC

Indeglia A, Leung JC, Miller SA, et al. An African-Specific Variant of TP53 Reveals PADI4 as a Regulator of p53-Mediated Tumor Suppression. Cancer Discov. 2023;13(7):1696–1719. doi: 10.1158/2159-8290.CD-22-1315 PubMed DOI PMC

Tanikawa C, Ueda K, Nakagawa H, et al. Regulation of protein Citrullination through p53/PADI4 network in DNA damage response. Cancer Res. 2009;69(22):8761–8769. doi: 10.1158/0008-5472.CAN-09-2280 PubMed DOI

Raimondi I, Ciribilli Y, Monti P, et al. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements. PLOS ONE. 2013;8(7):e69152. doi: 10.1371/journal.pone.0069152 PubMed DOI PMC

Scott GK, Yau C, Becker BC, et al. Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition. Mol Cancer Ther. 2019;18(8):1374–1385. doi: 10.1158/1535-7163.MCT-18-1323 PubMed DOI PMC

Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A. 2010;107(16):7461–7466. doi: 10.1073/pnas.1002459107 PubMed DOI PMC

Tajan M, Hock AK, Blagih J, et al. A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metab. 2018;28(5):721–736 e726. doi: 10.1016/j.cmet.2018.07.005 PubMed DOI PMC

Morita M, Kudo K, Shima H, et al. Dietary intervention as a therapeutic for cancer. Cancer Sci. 2021;112(2):498–504. doi: 10.1111/cas.14777 PubMed DOI PMC

Wei Z, Liu X, Cheng C, et al. Metabolism of Amino Acids in Cancer. Front Cell Dev Biol. 2020;8:603837. doi: 10.3389/fcell.2020.603837 PubMed DOI PMC

Chen J, Cui L, Lu S, et al. Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 2024;15(42). doi: 10.1038/s41419-024-06435-w PubMed DOI PMC

Hardie DG. 100 years of the Warburg effect: a historical perspective. Endocr Relat Cancer. 2022;29(12):T1–T13. doi: 10.1530/ERC-22-0173 PubMed DOI

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013 PubMed DOI

Stine ZE, Schug ZT, Salvino JM, et al. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21(2):141–162. doi: 10.1038/s41573-021-00339-6 PubMed DOI PMC

Panwar V, Singh A, Bhatt M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 2023;8(1):375. doi: 10.1038/s41392-023-01608-z PubMed DOI PMC

Yue S, Li G, He S, et al. The Central Role of mTORC1 in Amino Acid Sensing. Cancer Res. 2022;82(17):2964–2974. doi: 10.1158/0008-5472.CAN-21-4403 PubMed DOI

Zou Z, Tao T, Li H, et al. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 2020;10(1):31. doi: 10.1186/s13578-020-00396-1 PubMed DOI PMC

Cui D, Qu R, Liu D, et al. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol. 2021;9:775507. doi: 10.3389/fcell.2021.775507 PubMed DOI PMC

Horton LE, Bushell M, Barth-Baus D, et al. p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. Oncogene. 2002;21(34):5325–5334. doi: 10.1038/sj.onc.1205662 PubMed DOI

Drakos E, Atsaves V, Li J, et al. Stabilization and activation of p53 downregulates mTOR signaling through AMPK in mantle cell lymphoma. Leukemia. 2009;23(4):784–790. doi: 10.1038/leu.2008.348 PubMed DOI

Demidenko ZN, Korotchkina LG, Gudkov AV, et al. Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci U S A. 2010;107(21):9660–9664. doi: 10.1073/pnas.1002298107 PubMed DOI PMC

Korotchkina LG, Leontieva OV, Bukreeva EI, et al. The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY). 2010;2(6):344–352. doi: 10.18632/aging.100160 PubMed DOI PMC

Coronel L, Häckes D, Schwab K, et al. p53-mediated AKT and mTOR inhibition requires RFX7 and DDIT4 and depends on nutrient abundance. Oncogene. 2022;41(7):1063–1069. doi: 10.1038/s41388-021-02147-z PubMed DOI PMC

Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134(3):451–460. doi: 10.1016/j.cell.2008.06.028 PubMed DOI PMC

Akeno N, Miller AL, Ma X, et al. p53 suppresses carcinoma progression by inhibiting mTOR pathway activation. Oncogene. 2015;34(5):589–599. doi: 10.1038/onc.2013.589 PubMed DOI PMC

Agarwal S, Bell CM, Taylor SM, et al. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14(1):66–77. doi: 10.1158/1541-7786.MCR-15-0159 PubMed DOI PMC

Jung SH, Hwang HJ, Kang D, et al. mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene. 2019;38(10):1639–1650. doi: 10.1038/s41388-018-0521-8 PubMed DOI PMC

Tanaka C, O’Reilly T, Kovarik JM, et al. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol. 2008;26(10):1596–1602. doi: 10.1200/JCO.2007.14.1127 PubMed DOI

Alimonti A, Nardella C, Chen Z, et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest. 2010;120(3):681–693. doi: 10.1172/JCI40535 PubMed DOI PMC

Zhu N, Gu L, Li F, et al. Inhibition of the Akt/survivin pathway synergizes the antileukemia effect of nutlin-3 in acute lymphoblastic leukemia cells. Mol Cancer Ther. 2008;7(5):1101–1109. doi: 10.1158/1535-7163.MCT-08-0179 PubMed DOI

Psatha K, Kollipara L, Drakos E, et al. Interruption of p53-MDM2 Interaction by Nutlin-3a in Human Lymphoma Cell Models Initiates a Cell-Dependent Global Effect on Transcriptome and Proteome Level. Cancers (Basel). 2023;15(15):3903. doi: 10.3390/cancers15153903 PubMed DOI PMC

Herman SE, Gordon AL, Wagner AJ, et al. Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–2088. doi: 10.1182/blood-2010-02-271171 PubMed DOI PMC

Lukas M, Velten B, Sellner L, et al. Survey of ex vivo drug combination effects in chronic lymphocytic leukemia reveals synergistic drug effects and genetic dependencies. Leukemia. 2020;34(11):2934–2950. doi: 10.1038/s41375-020-0846-5 PubMed DOI PMC

Sorriento D, Del Giudice C, Bertamino A, et al. New small molecules, ISA27 and SM13, inhibit tumour growth inducing mitochondrial effects of p53. Br J Cancer. 2015;112(1):77–85. doi: 10.1038/bjc.2014.577 PubMed DOI PMC

Daniele S, Costa B, Zappelli E, et al. Combined inhibition of AKT/mTOR and MDM2 enhances Glioblastoma Multiforme cell apoptosis and differentiation of cancer stem cells. Sci Rep. 2015;5(1):9956. doi: 10.1038/srep09956 PubMed DOI PMC

Zhang W, Konopleva M, Burks JK, et al. Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces Apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res. 2010;70(6):2424–2434. doi: 10.1158/0008-5472.CAN-09-0878 PubMed DOI PMC

Verdijk RM, den Bakker MA, Dubbink HJ, et al. TP53 mutation analysis of malignant peripheral nerve sheath tumors. J Neuropathol Exp Neurol. 2010;69(1):16–26. doi: 10.1097/NEN.0b013e3181c55d55 PubMed DOI

Delord JP, Italiano A, Awada A, et al. Selective Oral MEK1/2 Inhibitor Pimasertib: A Phase I Trial in Patients with Advanced Solid Tumors. Target Oncol. 2021;16(1):37–46. doi: 10.1007/s11523-020-00768-0 PubMed DOI

Wang S, Sun W, Zhao Y, et al. SAR405838: An Optimized Inhibitor of MDM2–p53 Interaction That Induces Complete and Durable Tumor Regression. Cancer Res. 2014;74(20):5855–5865. doi: 10.1158/0008-5472.CAN-14-0799 PubMed DOI PMC

Gilmartin AG, Bleam MR, Groy A, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17(5):989–1000. doi: 10.1158/1078-0432.CCR-10-2200 PubMed DOI

He S, Li Q, Huang Q, et al. Targeting Protein Kinase C for Cancer Therapy. Cancers (Basel). 2022;14(5):1104. doi: 10.3390/cancers14051104 PubMed DOI PMC

Wagner J, von Matt P, Sedrani R, et al. Discovery of 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione (AEB071), a potent and selective inhibitor of protein kinase C isotypes. J Med Chem. 2009;52(20):6193–6196. doi: 10.1021/jm901108b PubMed DOI

Carita G, Frisch-Dit-Leitz E, Dahmani A, et al. Dual inhibition of protein kinase C and p53-MDM2 or PKC and mTORC1 are novel efficient therapeutic approaches for uveal melanoma. Oncotarget. 2016;7(23):33542–33556. doi: 10.18632/oncotarget.9552 PubMed DOI PMC

Trindade-Silva AE, Lim-Fong GE, Sharp KH, et al. Bryostatins: biological context and biotechnological prospects. Curr Opin Biotechnol. 2010;21(6):834–842. doi: 10.1016/j.copbio.2010.09.018 PubMed DOI PMC

Heijkants RC, Nieveen M, Hart KC, et al. Targeting MDMX and PKCdelta to improve current uveal melanoma therapeutic strategies. Oncogenesis. 2018;7(33). doi: 10.1038/s41389-018-0041-y PubMed DOI PMC

He L, Tang J, Andersson EI, et al. Patient-Customized Drug Combination Prediction and Testing for T-cell Prolymphocytic Leukemia Patients. Cancer Res. 2018;78(9):2407–2418. doi: 10.1158/0008-5472.CAN-17-3644 PubMed DOI

Visser M, Papillon JPN, Luzzio M, et al. Discovery of Darovasertib (NVP-LXS196), a Pan-pkc Inhibitor for the Treatment of Metastatic Uveal Melanoma. J Med Chem. 2024;67(2):1447–1459. doi: 10.1021/acs.jmedchem.3c02002 PubMed DOI

Piperno-Neumann S, Carlino MS, Boni V, et al. A phase I trial of LXS196, a protein kinase C (PKC) inhibitor, for metastatic uveal melanoma. Br J Cancer. 2023;128(6):1040–1051. doi: 10.1038/s41416-022-02133-6 PubMed DOI PMC

Ghalehbandi S, Yuzugulen J, Pranjol MZI, et al. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949:175586. doi: 10.1016/j.ejphar.2023.175586 PubMed DOI

Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400. doi: 10.1038/nrd1381 PubMed DOI

Patterson DM, Gao D, Trahan DN, et al. Effect of MDM2 and vascular endothelial growth factor inhibition on tumor angiogenesis and metastasis in neuroblastoma. Angiogenesis. 2011;14(3):255–266. doi: 10.1007/s10456-011-9210-8 PubMed DOI

Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;22(1):138. doi: 10.1186/s12943-023-01827-6 PubMed DOI PMC

Saraon P, Pathmanathan S, Snider J, et al. Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene. 2021;40(24):4079–4093. doi: 10.1038/s41388-021-01841-2 PubMed DOI

Pottier C, Fresnais M, Gilon M, et al. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers (Basel). 2020;12(3):731. doi: 10.3390/cancers12030731 PubMed DOI PMC

Shah R, Lester JF. Tyrosine Kinase Inhibitors for the Treatment of EGFR Mutation-Positive Non–Small-Cell Lung Cancer: A Clash of the Generations. Clin Lung Cancer. 2020;21(3):e216–e228. doi: 10.1016/j.cllc.2019.12.003 PubMed DOI

Alves R, Gonçalves AC, Rutella S, et al. Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia—From Molecular Mechanisms to Clinical Relevance. Cancers (Basel). 2021;13(19):4820. doi: 10.3390/cancers13194820 PubMed DOI PMC

Joensuu H, Dimitrijevic S. Tyrosine kinase inhibitor imatinib (STI571) as an anticancer agent for solid tumours. Ann Med. 2001;33(7):451–455. doi: 10.3109/07853890109002093 PubMed DOI

Blay JY, von Mehren M. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin Oncol. 2011;38(Suppl 1):S3–9. doi: 10.1053/j.seminoncol.2011.01.016 PubMed DOI PMC

Aichberger KJ, Mayerhofer M, Krauth M-T, et al. Low-Level Expression of Proapoptotic Bcl-2–Interacting Mediator in Leukemic Cells in Patients with Chronic Myeloid Leukemia: Role of BCR/ABL, Characterization of Underlying Signaling Pathways, and Reexpression by Novel Pharmacologic Compounds. Cancer Res. 2005;65(20):9436–9444. doi: 10.1158/0008-5472.CAN-05-0972 PubMed DOI

Carter BZ, Mak PY, Mak DH, et al. Synergistic effects of p53 activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget. 2015;6(31):30487–30499. doi: 10.18632/oncotarget.5890 PubMed DOI PMC

Carter BZ, Mak PY, Mu H, et al. Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model. Haematologica. 2020;105(5):1274–1284. doi: 10.3324/haematol.2019.219261 PubMed DOI PMC

Kurosu T, Wu N, Oshikawa G, et al. Enhancement of imatinib-induced apoptosis of bcr/abl-expressing cells by nutlin-3 through synergistic activation of the mitochondrial apoptotic pathway. Apoptosis. 2010;15(5):608–620. doi: 10.1007/s10495-010-0457-0 PubMed DOI

Lindauer M, Hochhaus A. Dasatinib. Recent Results Cancer Res. 2010;184:83–102. doi: 10.1007/978-3-642-01222-8_7 PubMed DOI

Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Sig Transduct Target Ther. 2023;8(1):262. doi: 10.1038/s41392-023-01469-6 PubMed DOI PMC

Jabbour E, Deininger M, Hochhaus A. Management of adverse events associated with tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia. 2011;25(2):201–210. doi: 10.1038/leu.2010.215 PubMed DOI

Fachi MM, Tonin FS, Leonart LP, et al. Haematological adverse events associated with tyrosine kinase inhibitors in chronic myeloid leukaemia: A network meta-analysis. Br J Clin Pharmacol. 2019;85(10):2280–2291. doi: 10.1111/bcp.13933 PubMed DOI PMC

Scott MT, Liu W, Mitchell R, et al. Activating p53 abolishes self-renewal of quiescent leukaemic stem cells in residual CML disease. Nat Commun. 2024;15(1):651. doi: 10.1038/s41467-024-44771-9 PubMed DOI PMC

Adnan Awad S, Dufva O, Klievink J, et al. Integrated drug profiling and CRISPR screening identify BCR: ABL1-independent vulnerabilities in chronic myeloid leukemia. Cell Rep Med. 2024;5(5):101521. doi: 10.1016/j.xcrm.2024.101521 PubMed DOI PMC

Zhao JC, Agarwal S, Ahmad H, et al. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev. 2022;52:100905. doi: 10.1016/j.blre.2021.100905 PubMed DOI PMC

Gallogly MM, Lazarus HM, Cooper BW. Midostaurin: a novel therapeutic agent for patients with FLT3-mutated acute myeloid leukemia and systemic mastocytosis. Ther Adv Hematol. 2017;8(9):245–261. doi: 10.1177/2040620717721459 PubMed DOI PMC

Manley PW, Weisberg E, Sattler M, et al. Midostaurin, a Natural Product-Derived Kinase Inhibitor Recently Approved for the Treatment of Hematological Malignancies (Published as part of the Biochemistry series “Biochemistry to Bedside”). Biochemistry. 2018;57(5):477–478. doi: 10.1021/acs.biochem.7b01126 PubMed DOI PMC

Weisberg E, Sattler M, Manley PW, et al. Spotlight on midostaurin in the treatment of FLT3-mutated acute myeloid leukemia and systemic mastocytosis: design, development, and potential place in therapy. Onco Targets Ther. 2018;11:175–182. doi: 10.2147/OTT.S127679 PubMed DOI PMC

Seipel K, Marques MAT, Sidler C, et al. MDM2- and FLT3-inhibitors in the treatment of FLT3-ITD acute myeloid leukemia, specificity and efficacy of NVP-HDM201 and midostaurin. Haematologica. 2018;103(11):1862–1872. doi: 10.3324/haematol.2018.191650 PubMed DOI PMC

Xie X, Yu T, Li X, et al. Recent advances in targeting the “undruggable” proteins: from drug discovery to clinical trials. Sig Transduct Target Ther. 2023;8(1):335. doi: 10.1038/s41392-023-01589-z PubMed DOI PMC

Levis M. Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia. Future Oncol. 2014;10(9):1571–1579. doi: 10.2217/fon.14.105 PubMed DOI PMC

Michael Andreeff WZ, Kumar P, Zernovak O, et al. Takahiko Seki. Acute Myeloid Leukemia. 2018;132 (Blood, Supplement 1):2720–2720. doi: 10.1182/blood-2018-99-115183 DOI

Rozkiewicz D, Hermanowicz JM, Kwiatkowska I, et al. Bruton’s Tyrosine Kinase Inhibitors (BTKIs): Review of Preclinical Studies and Evaluation of Clinical Trials. Molecules. 2023;28(5):2400. doi: 10.3390/molecules28052400 PubMed DOI PMC

Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107(29):13075–13080. doi: 10.1073/pnas.1004594107 PubMed DOI PMC

Woyach JA, Furman RR, Liu T-M, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–2294. doi: 10.1056/NEJMoa1400029 PubMed DOI PMC

Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients with Chronic Lymphocytic Leukemia. JAMA Oncol. 2015;1:80–87. doi: 10.1001/jamaoncol.2014.218 PubMed DOI PMC

Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol. 2020;10:591577. doi: 10.3389/fonc.2020.591577 PubMed DOI PMC

Luo Q, Pan W, Zhou S, et al. A Novel BCL-2 Inhibitor APG-2575 Exerts Synthetic Lethality with BTK or MDM2-p53 Inhibitor in Diffuse Large B-Cell Lymphoma. Oncol Res. 2020;28(4):331–344. doi: 10.3727/096504020X15825405463920 PubMed DOI PMC

Voltan R, Rimondi E, Melloni E, et al. Ibrutinib synergizes with MDM-2 inhibitors in promoting cytotoxicity in B chronic lymphocytic leukemia. Oncotarget. 2016;7(43):70623–70638. doi: 10.18632/oncotarget.12139 PubMed DOI PMC

Rimondi E, Melloni E, Romani A, et al. Overcoming of Microenvironment Protection on Primary Chronic Lymphocytic Leukemia Cells after Treatment with BTK and MDM2 Pharmacological Inhibitors. Curr Oncol. 2021;28(4):2439–2451. doi: 10.3390/curroncol28040223 PubMed DOI PMC

Tan X, Yan Y, Song B, et al. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol. 2023;12(1). doi: 10.1186/s40164-023-00446-7 PubMed DOI PMC

Lim ST, Chen XL, Lim Y, et al. Nuclear FAK promotes cell proliferation and survival through ferm-enhanced p53 degradation. Mol Cell. 2008;29(1):9–22. doi: 10.1016/j.molcel.2007.11.031 PubMed DOI PMC

Golubovskaya VM, Ho B, Zheng M, et al. Disruption of focal adhesion kinase and p53 interaction with small molecule compound R2 reactivated p53 and blocked tumor growth. BMC Cancer. 2013;13(1):342. doi: 10.1186/1471-2407-13-342 PubMed DOI PMC

Yoon H, Dehart JP, Murphy JM, et al. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem. 2015;63(2):114–128. doi: 10.1369/0022155414561498 PubMed DOI PMC

Mitra SK, Schlaepfer DD. Integrin-regulated fak–Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18(5):516–523. doi: 10.1016/j.ceb.2006.08.011 PubMed DOI

Marlowe TA, Lenzo FL, Figel SA, et al. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors. Mol Cancer Ther. 2016;15(12):3028–3039. doi: 10.1158/1535-7163.MCT-16-0366 PubMed DOI PMC

Moritake H, Saito Y, Sawa D, et al. TAE226, a dual inhibitor of focal adhesion kinase and insulin-like growth factor-I receptor, is effective for Ewing sarcoma. Cancer Med. 2019;8(18):7809–7821. doi: 10.1002/cam4.2647 PubMed DOI PMC

Ou WB, Lu M, Eilers G, et al. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53. Br J Cancer. 2016;115(10):1253–1263. doi: 10.1038/bjc.2016.331 PubMed DOI PMC

Gillory LA, Stewart JE, Megison ML, et al. Focal adhesion kinase and p53 synergistically decrease neuroblastoma cell survival. J Surg Res. 2015;196(2):339–349. doi: 10.1016/j.jss.2015.03.021 PubMed DOI PMC

Shao Y, Zhang S, Zhang Y, et al. Recent advance of spleen tyrosine kinase in diseases and drugs. Int Immunopharmacol. 2021;90:107168. doi: 10.1016/j.intimp.2020.107168 PubMed DOI

Kaur C, Thakur A, Liou KC, et al. Spleen tyrosine kinase (SYK): an emerging target for the assemblage of small molecule antitumor agents. Expert Opin Investig Drugs. 2024;33(9):1–18. doi: 10.1080/13543784.2024.2388559 PubMed DOI

Al Hamad M. Contribution of BCR-ABL molecular variants and leukemic stem cells in response and resistance to tyrosine kinase inhibitors: a review. F1000Res. 2021;10:1288. doi: 10.12688/f1000research.74570.1 PubMed DOI PMC

Capdeville R, Buchdunger E, Zimmermann J, et al. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1(7):493–502. doi: 10.1038/nrd839 PubMed DOI

Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11(84). doi: 10.1186/s13045-018-0624-2 PubMed DOI PMC

Trino S, Iacobucci I, Erriquez D, et al. Targeting the p53-MDM2 interaction by the small-molecule MDM2 antagonist Nutlin-3a: a new challenged target therapy in adult Philadelphia positive acute lymphoblastic leukemia patients. Oncotarget. 2016;7(11):12951–12961. doi: 10.18632/oncotarget.7339 PubMed DOI PMC

Ma B, Feng H, Feng C, et al. Kill Two Birds with One Stone: A Multifunctional Dual-Targeting Protein Drug to Overcome Imatinib Resistance in Philadelphia Chromosome-Positive Leukemia. Adv Sci (Weinh). 2022;9(13):e2104850. doi: 10.1002/advs.202104850 PubMed DOI PMC

Saha MN, Qiu L, Chang H. Targeting p53 by small molecules in hematological malignancies. J Hematol Oncol. 2013;6(23). doi: 10.1186/1756-8722-6-23 PubMed DOI PMC

Vainonen JP, Momeny M, Westermarck J. Druggable cancer phosphatases. Sci Transl Med. 2021;13(588). doi: 10.1126/scitranslmed.abe2967 PubMed DOI

Guo M, Li Z, Gu M, et al. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem. 2024;264:116031. doi: 10.1016/j.ejmech.2023.116031 PubMed DOI

Zhao M, Shuai W, Su Z, et al. Protein tyrosine phosphatases: emerging role in cancer therapy resistance. Cancer Commun (Lond). 2024;44(6):637–653. doi: 10.1002/cac2.12548 PubMed DOI PMC

Kocik J, Machula M, Wisniewska A, et al. Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers (Basel). 2019;11(7):1014. doi: 10.3390/cancers11071014 PubMed DOI PMC

Gilmartin AG, Faitg TH, Richter M, et al. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat Chem Biol. 2014;10(3):181–187. doi: 10.1038/nchembio.1427 PubMed DOI

Chen Z, Wang L, Yao D, et al. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis. Sci Rep. 2016;6(1):38011. doi: 10.1038/srep38011 PubMed DOI PMC

Pechackova S, Burdova K, Benada J, et al. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7(12):14458–14475. doi: 10.18632/oncotarget.7363 PubMed DOI PMC

Richter M, Dayaram T, Gilmartin AG, et al. WIP1 phosphatase as a potential therapeutic target in neuroblastoma. PLOS ONE. 2015;10(2):e0115635. doi: 10.1371/journal.pone.0115635 PubMed DOI PMC

Kojima K, Maeda A, Yoshimura M, et al. The pathophysiological significance of PPM1D and therapeutic targeting of PPM1D-mediated signaling by GSK2830371 in mantle cell lymphoma. Oncotarget. 2016;7(43):69625–69637. doi: 10.18632/oncotarget.11904 PubMed DOI PMC

Esfandiari A, Hawthorne TA, Nakjang S, et al. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Mol Cancer Ther. 2016;15(3):379–391. doi: 10.1158/1535-7163.MCT-15-0651 PubMed DOI PMC

Sriraman A, Radovanovic M, Wienken M, et al. Cooperation of Nutlin-3a and a Wip1 inhibitor to induce p53 activity. Oncotarget. 2016;7(22):31623–31638. doi: 10.18632/oncotarget.9302 PubMed DOI PMC

Chamberlain V, Drew Y, Lunec J. Tipping Growth Inhibition into Apoptosis by Combining Treatment with MDM2 and WIP1 Inhibitors in p53(WT) Uterine Leiomyosarcoma. Cancers (Basel). 2021;14(1):14. doi: 10.3390/cancers14010014 PubMed DOI PMC

Wu CE, Chen C-P, Pan Y-R, et al. In vitro and in vivo study of GSK2830371 and RG7388 combination in liver adenocarcinoma. Am J Cancer Res. 2022;12(9):4399–4410. PubMed PMC

Wu CE, Esfandiari A, Ho Y-H, et al. Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. Br J Cancer. 2018;118(4):495–508. doi: 10.1038/bjc.2017.433 PubMed DOI PMC

Wu CE, Huang C-Y, Chen C-P, et al. WIP1 Inhibition by GSK2830371 Potentiates HDM201 through Enhanced p53 Phosphorylation and Activation in Liver Adenocarcinoma Cells. Cancers (Basel). 2021;13(15):3876. doi: 10.3390/cancers13153876 PubMed DOI PMC

Fontana MC, Nanni J, Ghelli Luserna di Rorà A, et al. Pharmacological Inhibition of WIP1 Sensitizes Acute Myeloid Leukemia Cells to the MDM2 Inhibitor Nutlin-3a. Biomedicines. 2021;9(4):388. doi: 10.3390/biomedicines9040388 PubMed DOI PMC

Pechackova S, Burdova K, Macurek L. WIP1 phosphatase as pharmacological target in cancer therapy. J Mol Med (Berl). 2017;95(6):589–599. doi: 10.1007/s00109-017-1536-2 PubMed DOI PMC

Tan T, Chu G. p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Mol Cell Biol. 2002;22(10):3247–3254. doi: 10.1128/MCB.22.10.3247-3254.2002 PubMed DOI PMC

Bourdon A, Minai L, Serre V, et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet. 2007;39(6):776–780. doi: 10.1038/ng2040 PubMed DOI

Pontarin G, Ferraro P, Bee L, et al. Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc Natl Acad Sci U S A. 2012;109(33):13302–13307. doi: 10.1073/pnas.1211289109 PubMed DOI PMC

Adimoolam S, Ford JM. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A. 2002;99(20):12985–12990. doi: 10.1073/pnas.202485699 PubMed DOI PMC

Melis JP, Luijten M, Mullenders LH, et al. The role of XPC: implications in cancer and oxidative DNA damage. Mutat Res. 2011;728(3):107–117. doi: 10.1016/j.mrrev.2011.07.001 PubMed DOI PMC

Demeny MA, Virag L. The PARP Enzyme Family and the Hallmarks of Cancer Part 2: Hallmarks Related to Cancer Host Interactions. Cancers (Basel). 2021;13(9):2057. doi: 10.3390/cancers13092057 PubMed DOI PMC

Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–921. doi: 10.1038/nature03445 PubMed DOI

Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(adp-ribose) polymerase. Nature. 2005;434(7035):913–917. doi: 10.1038/nature03443 PubMed DOI

Rose M, Burgess JT, O’Byrne K, et al. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol. 2020;8:564601. doi: 10.3389/fcell.2020.564601 PubMed DOI PMC

Thomas HD, Calabrese CR, Batey MA, et al. Preclinical selection of a novel poly(adp-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther. 2007;6(3):945–956. doi: 10.1158/1535-7163.MCT-06-0552 PubMed DOI

Zanjirband M, Curtin N, Edmondson RJ, et al. Combination treatment with rucaparib (Rubraca) and MDM2 inhibitors, Nutlin-3 and RG7388, has synergistic and dose reduction potential in ovarian cancer. Oncotarget. 2017;8(41):69779–69796. doi: 10.18632/oncotarget.19266 PubMed DOI PMC

Yamamoto N, Nokihara H, Yamada Y, et al. A Phase I, dose-finding and pharmacokinetic study of olaparib (AZD2281) in Japanese patients with advanced solid tumors*,†. Cancer Sci. 2012;103(3):504–509. doi: 10.1111/j.1349-7006.2011.02179.x PubMed DOI PMC

Calheiros J, Corbo V, Saraiva L. Overcoming therapeutic resistance in pancreatic cancer: Emerging opportunities by targeting BRCAs and p53. Biochim Biophys Acta Rev Cancer. 2023;1878(4):188914. doi: 10.1016/j.bbcan.2023.188914 PubMed DOI

Phan LM, Rezaeian AH. ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development. Genes (Basel). 2021;12(6):845. doi: 10.3390/genes12060845 PubMed DOI PMC

Hickson I, Zhao Y, Richardson CJ, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 2004;64(24):9152–9159. doi: 10.1158/0008-5472.CAN-04-2727 PubMed DOI

Sullivan KD, Padilla-Just N, Henry RE, et al. ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nat Chem Biol. 2012;8(7):646–654. doi: 10.1038/nchembio.965 PubMed DOI PMC

Toyokuni S, Ito F, Yamashita K, et al. Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radic Biol Med. 2017;108:610–626. doi: 10.1016/j.freeradbiomed.2017.04.024 PubMed DOI

Zhan J, Wang J, Liang Y, et al. P53 together with ferroptosis: a promising strategy leaving cancer cells without escape. Acta Biochim Biophys Sin (Shanghai). 2024;56(1):1–14. doi: 10.3724/abbs.2023270 PubMed DOI PMC

Dixon SJ, Olzmann JA. The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 2024;25(6):424–442. doi: 10.1038/s41580-024-00703-5 PubMed DOI

Zhou Q, Meng Y, Li D, et al. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 2024;9(1). doi: 10.1038/s41392-024-01769-5 PubMed DOI PMC

Murphy ME. Ironing out how p53 regulates ferroptosis. Proc Natl Acad Sci U S A. 2016;113(44):12350–12352. doi: 10.1073/pnas.1615159113 PubMed DOI PMC

Ou Y, Wang SJ, Li D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A. 2016;113(44):E6806–E6812. doi: 10.1073/pnas.1607152113 PubMed DOI PMC

Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57–62. doi: 10.1038/nature14344 PubMed DOI PMC

Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). 2018;38(1):1–13. doi: 10.1186/s40880-018-0288-x PubMed DOI PMC

Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620. doi: 10.1007/s13238-020-00789-5 PubMed DOI PMC

Venkatesh D, O’Brien NA, Zandkarimi F, et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev. 2020;34(7–8):526–543. doi: 10.1101/gad.334219.119 PubMed DOI PMC

Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–698. doi: 10.1038/s41586-019-1707-0 PubMed DOI

Tarangelo A, Magtanong L, Bieging-Rolett KT, et al. p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells. Cell Rep. 2018;22(3):569–575. doi: 10.1016/j.celrep.2017.12.077 PubMed DOI PMC

Shibata Y, Yasui H, Higashikawa K, et al. Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLOS ONE. 2019;14(12):e0225931. doi: 10.1371/journal.pone.0225931 PubMed DOI PMC

He W, Shu W, Xue L, et al. Synergistic Effect of Erastin Combined with Nutlin-3 on Vestibular Schwannoma Cells as p53 Modulates Erastin-Induced Ferroptosis Response. J Oncol. 2022;2022:1–18. doi: 10.1155/2022/7507857 PubMed DOI PMC

Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–742. PubMed PMC

Schlereth K, Heyl C, Krampitz A-M, et al. Characterization of the p53 Cistrome – DNA Binding Cooperativity Dissects p53’s Tumor Suppressor Functions. PloS Genet. 2013;9(8):e1003726. doi: 10.1371/journal.pgen.1003726 PubMed DOI PMC

Cortez MA, Ivan C, Valdecanas D, et al. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst. 2016;108(1). doi: 10.1093/jnci/djv303 PubMed DOI PMC

Wang X, Li J, Dong K, et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal. 2015;27(3):443–452. doi: 10.1016/j.cellsig.2014.12.003 PubMed DOI

Zuo Y, Zheng W, Liu J, et al. MiR-34a-5p/PD-L1 axis regulates cisplatin chemoresistance of ovarian cancer cells. Neoplasma. 2020;67(01):93–101. doi: 10.4149/neo_2019_190202N106 PubMed DOI

Yong H, Fu J, Gao G, et al. MiR-34a suppresses the proliferation and invasion of gastric cancer by modulating PDL1 in the immune microenvironment. Mol Cell Probes. 2020;53:101601. doi: 10.1016/j.mcp.2020.101601 PubMed DOI

Wang HQ, Mulford IJ, Sharp F, et al. Inhibition of MDM2 Promotes Antitumor Responses in p53 Wild-Type Cancer Cells through Their Interaction with the Immune and Stromal Microenvironment. Cancer Res. 2021;81(11):3079–3091. doi: 10.1158/0008-5472.CAN-20-0189 PubMed DOI

Brummer T, Zeiser R. The role of the MDM2/p53 axis in anti-tumor immune responses. Blood. 2023;143(26):2701–2709. doi: 10.1182/blood.2023020731 PubMed DOI PMC

Novartis . NCT02890069 - PDR001XHDM201. 2023.

Zettl M, Wurm M, Schaaf O, et al. Combination of two novel blocking antibodies, anti-PD-1 antibody ezabenlimab (BI 754091) and anti-LAG-3 antibody BI 754111, leads to increased immune cell responses. Oncoimmunology. 2022;11(1):2080328. doi: 10.1080/2162402X.2022.2080328 PubMed DOI PMC

Sharma MD, Rodriguez PC, Koehn BH, et al. Activation of p53 in Immature Myeloid Precursor Cells Controls Differentiation into Ly6c(+)CD103(+) Monocytic Antigen-Presenting Cells in Tumors. Immunity. 2018;48(1):91–106 e106. doi: 10.1016/j.immuni.2017.12.014 PubMed DOI PMC

Gupta S, Shukla S. Limitations of Immunotherapy in Cancer. Cureus. 2022;14:e30856. doi: 10.7759/cureus.30856 PubMed DOI PMC

Slaney CY, Kershaw MH. Challenges and Opportunities for Effective Cancer Immunotherapies. Cancers (Basel). 2020;12(11):3164. doi: 10.3390/cancers12113164 PubMed DOI PMC

Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15(1):2–8. doi: 10.1038/ncb2641 PubMed DOI

Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell. 1991;65(5):765–774. doi: 10.1016/0092-8674(91)90384-b PubMed DOI

Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ. 2022;29(5):911–920. doi: 10.1038/s41418-022-00962-9 PubMed DOI PMC

Yue X, Zhao Y, Xu Y, et al. Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. J Mol Biol. 2017;429(11):1595–1606. doi: 10.1016/j.jmb.2017.03.030 PubMed DOI PMC

Chen X, Zhang T, Su W, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022;13(11):974. doi: 10.1038/s41419-022-05408-1 PubMed DOI PMC

Yang M, Jaaks P, Dry J, et al. Stratification and prediction of drug synergy based on target functional similarity. NPJ Syst Biol Appl. 2020;6(1). doi: 10.1038/s41540-020-0136-x PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...