Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MIS-5000432
Operational Programme ''Human Resources Development, Education and Lifelong LearningStrengthening Human Resources Research Potential via Doctorate Research
project GACR - EXPRO, 19-27454X
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000754
Operational Programme Research, Development and Education - European Regional Development Fund
MIS-5002772
Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme ''Competitiveness, Entrepreneurship and Innovation
PubMed
33374901
PubMed Central
PMC7821927
DOI
10.3390/nano11010001
PII: nano11010001
Knihovny.cz E-zdroje
- Klíčová slova
- carbon materials, fuming nitric acid, furfuryl alcohol, hypergolics, nanocarbon, rocket fuels, waste,
- Publikační typ
- časopisecké články MeSH
In hypergolics two substances ignite spontaneously upon contact without external aid. Although the concept mostly applies to rocket fuels and propellants, it is only recently that hypergolics has been recognized from our group as a radically new methodology towards carbon materials synthesis. Comparatively to other preparative methods, hypergolics allows the rapid and spontaneous formation of carbon at ambient conditions in an exothermic manner (e.g., the method releases both carbon and energy at room temperature and atmospheric pressure). In an effort to further build upon the idea of hypergolic synthesis, herein we exploit a classic liquid rocket bipropellant composed of furfuryl alcohol and fuming nitric acid to prepare carbon nanosheets by simply mixing the two reagents at ambient conditions. Furfuryl alcohol served as the carbon source while fuming nitric acid as a strong oxidizer. On ignition the temperature is raised high enough to induce carbonization in a sort of in-situ pyrolytic process. Simultaneously, the released energy was directly converted into useful work, such as heating a liquid to boiling or placing Crookes radiometer into motion. Apart from its value as a new synthesis approach in materials science, carbon from rocket fuel additionally provides a practical way in processing rocket fuel waste or disposed rocket fuels.
Department of Materials Science and Engineering University of Ioannina 45110 Ioannina Greece
Physics Department University of Ioannina 45110 Ioannina Greece
Zobrazit více v PubMed
Mariscal R., Maireles-Torres P., Ojeda M., Sádaba I., López Granados M. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016;9:1144–1189. doi: 10.1039/C5EE02666K. DOI
Iroegbu A.O., Hlangothi S.P. Furfuryl alcohol a versatile, eco-sustainable compound in perspective. Chem. Afr. 2019;2:223–239. doi: 10.1007/s42250-018-00036-9. DOI
Munjal N.L. Ignition catalysts for furfuryl alcohol—Red fuming nitric acid bipropellant. AIAA J. 1970;8:980–981. doi: 10.2514/3.5816. DOI
Kulkarni S.G., Bagalkote V.S., Patil S.S., Kumar U.P., Kumar V.A. Theoretical evaluation and experimental validation of performance parameters of new hypergolic liquid fuel blends with red fuming nitric acid as oxidizer. Propellants Explos. Pyrotech. 2009;34:520–525. doi: 10.1002/prep.200800061. DOI
Kulkarni S., Bagalkote V. Studies on pre-ignition reactions of hydrocarbon-based rocket fuels hypergolic with red fuming nitric acid as oxidizer. J. Energet. Mater. 2010;28:173–188. doi: 10.1080/07370650903360070. DOI
Bhosale M.V.K., Kulkarni S.G., Kulkarni P.S. Ionic liquid and biofuel blend: A low–cost and high performance hypergolic fuel for propulsion application. ChemistrySelect. 2016;1:1921–1925. doi: 10.1002/slct.201600358. DOI
Kyotani T., Nagai T., Inoue S., Tomita A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 1997;9:609–615. doi: 10.1021/cm960430h. DOI
Liu J., Wang H., Zhang L. Highly dispersible molecular sieve carbon nanoparticles. Chem. Mater. 2004;16:4205–4207. doi: 10.1021/cm0493400. DOI
Janus P., Janus R., Kuśtrowski P., Jarczewski S., Wach A., Silvestre-Albero A.M., Rodríguez-Reinoso F. Chemically activated poly(furfuryl alcohol)-derived CMK-3 carbon catalysts for the oxidative dehydrogenation of ethylbenzene. Catal. Today. 2014;235:201–209. doi: 10.1016/j.cattod.2014.03.019. DOI
Lorenc-Grabowska E., Rutkowski P. Tailoring mesoporosity of poly(furfuryl alcohol)-based activated carbons and their ability to adsorb organic compounds from water. J. Mater. Cycles Waste Manag. 2018;20:1638–1647. doi: 10.1007/s10163-018-0733-6. DOI
Węgrzyniak A., Jarczewski S., Kuśtrowski P., Michorczyk P. Influence of carbon precursor on porosity, surface composition and catalytic behaviour of CMK-3 in oxidative dehydrogenation of propane to propene. J. Porous Mater. 2018;25:687–696. doi: 10.1007/s10934-017-0482-2. DOI
Arnaiz M., Nair V., Mitra S., Ajuria J. Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors. Electrochim. Acta. 2019;304:437–446. doi: 10.1016/j.electacta.2019.03.029. DOI
Singh J., Basu S., Bhunia H. Furfuryl alcohol-derived carbon monoliths for CO2 capture: Adsorption isotherm and kinetic study. IOP Conf. Ser. Mater. Sci. Eng. 2019;625:012014. doi: 10.1088/1757-899X/625/1/012014. DOI
Janus P., Janus R., Dudek B., Drozdek M., Silvestre-Albero A., Rodríguez-Reinoso F., Kuśtrowski P. On mechanism of formation of SBA-15/furfuryl alcohol-derived mesoporous carbon replicas and its relationship with catalytic activity in oxidative dehydrogenation of ethylbenzene. Microporous Mesoporous Mater. 2020;299:110118. doi: 10.1016/j.micromeso.2020.110118. DOI
Baikousi M., Chalmpes N., Spyrou K., Bourlinos A.B., Avgeropoulos A., Gournis D., Karakassides M.A. Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Mater. Lett. 2019;254:58–61. doi: 10.1016/j.matlet.2019.07.019. DOI
Chalmpes N., Spyrou K., Bourlinos A.B., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Synthesis of highly crystalline graphite from spontaneous ignition of in situ derived acetylene and chlorine at ambient conditions. Molecules. 2020;25:297. doi: 10.3390/molecules25020297. PubMed DOI PMC
Chalmpes N., Asimakopoulos G., Spyrou K., Vasilopoulos K.C., Bourlinos A.B., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Functional carbon materials derived through hypergolic reactions at ambient conditions. Nanomaterials. 2020;10:566. doi: 10.3390/nano10030566. PubMed DOI PMC
Chalmpes N., Spyrou K., Vasilopoulos K.C., Bourlinos A.B., Moschovas D., Avgeropoulos A., Gioti C., Karakassides M.A., Gournis D. Hypergolics in carbon nanomaterials synthesis: New paradigms and perspectives. Molecules. 2020;25:2207. doi: 10.3390/molecules25092207. PubMed DOI PMC
Chalmpes N., Tantis I., Bakandritsos A., Bourlinos A.B., Karakassides M.A., Gournis D. Rapid carbon formation from spontaneous reaction of ferrocene and liquid bromine at ambient conditions. Nanomaterials. 2020;10:1564. doi: 10.3390/nano10081564. PubMed DOI PMC
Chalmpes N., Bourlinos A.B., Šedajová V., Kupka V., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Hypergolic materials synthesis through reaction of fuming nitric acid with certain cyclopentadienyl compounds. C—J. Carbon Res. 2020;6:61. doi: 10.3390/c6040061. DOI
Choura M., Belgacem N.M., Gandini A. Acid-Catalyzed Polycondensation of furfuryl alcohol: Mechanisms of chromophore formation and cross-linking. Macromolecules. 1996;29:3839–3850. doi: 10.1021/ma951522f. DOI
Guigo N., Mija A., Zavaglia R., Vincent L., Sbirrazzuoli N. New insights on the thermal degradation pathways of neat poly(furfuryl alcohol) and poly(furfuryl alcohol)/SiO2 hybrid materials. Polym. Degrad. Stab. 2009;94:908–913. doi: 10.1016/j.polymdegradstab.2009.03.008. DOI
Ahmad E.E.M., Luyt A.S., Djoković V. Thermal and dynamic mechanical properties of bio-based poly(furfuryl alcohol)/sisal whiskers nanocomposites. Polym. Bull. 2013;70:1265–1276. doi: 10.1007/s00289-012-0847-2. DOI
Wang Z., Lu Z., Huang Y., Xue R., Huang X., Chen L. Characterizations of crystalline structure and electrical properties of pyrolyzed polyfurfuryl alcohol. J. Appl. Phys. 1997;82:5705–5710. doi: 10.1063/1.366434. DOI
Almeida Filho C.D., Zarbin A.J.G. Porous carbon obtained by the pyrolysis of TiO2/poly(furfuryl alcohol) nanocomposite: Preparation, characterization and utilization for adsorption of reactive dyes from aqueous solution. J. Braz. Chem. Soc. 2006;17:1151–1157. doi: 10.1590/S0103-50532006000600012. DOI
Tsirka K., Katsiki A., Chalmpes N., Gournis D., Paipetis A.S. Mapping of graphene oxide and single layer graphene flakes—defects annealing and healing. Front. Mater. 2018;5 doi: 10.3389/fmats.2018.00037. DOI
Rommozzi E., Zannotti M., Giovannetti R., D’Amato C.A., Ferraro S., Minicucci M., Gunnella R., Di Cicco A. Reduced graphene oxide/TiO2 nanocomposite: From synthesis to characterization for efficient visible light photocatalytic applications. Catalysts. 2018;8:598. doi: 10.3390/catal8120598. DOI
Zhang L., Hu N., Yang C., Wei H., Yang Z., Wang Y., Wei L., Zhao J., Xu Z.J., Zhang Y. Free-standing functional graphene reinforced carbon films with excellent mechanical properties and superhydrophobic characteristic. Compos. Part A Appl. Sci. Manuf. 2015;74:96–106. doi: 10.1016/j.compositesa.2015.03.025. DOI
D’Arsié L., Esconjauregui S., Weatherup R.S., Wu X., Arter W.E., Sugime H., Cepek C., Robertson J. Stable, efficient p-type doping of graphene by nitric acid. RSC Adv. 2016;6:113185–113192. doi: 10.1039/C6RA23727D. DOI
Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008;46:833–840. doi: 10.1016/j.carbon.2008.02.012. DOI
Shen L., Zhang L., Wang K., Miao L., Lan Q., Jiang K., Lu H., Li M., Li Y., Shen B., et al. Analysis of oxidation degree of graphite oxide and chemical structure of corresponding reduced graphite oxide by selecting different-sized original graphite. RSC Adv. 2018;8 doi: 10.1039/C8RA01486H. PubMed DOI PMC
Kumar B., Asadi M., Pisasale D., Sinha-Ray S., Rosen B.A., Haasch R., Abiade J., Yarin A.L., Salehi-Khojin A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 2013;4:2819. doi: 10.1038/ncomms3819. DOI
Bourlinos A.B., Safarova K., Siskova K., Zbořil R. The production of chemically converted graphenes from graphite fluoride. Carbon. 2012;50:1425–1428. doi: 10.1016/j.carbon.2011.10.012. DOI
Munjal N.L., Parvatiyar M.G. Ignition of hybrid rocket fuels with fuming nitric acid as oxidant. J. Spacecr. Rocket. 1974;11:428–430. doi: 10.2514/3.62093. DOI
Durgapal U.C., Dutta P.K., Pant G.C., Ingalgaonkar M.B., Oka V.Y., Umap B.B. Studies on hypergolicity of several liquid fuels with fuming nitric acids as oxidizers. Propellants Explos. Pyrotech. 1987;12:149–153. doi: 10.1002/prep.19870120503. DOI
Hollingshead J., Litzinger M., Kiaoulias D., Eckenrode L., Moore J.D., Risha G.A., Yetter R.A. Combustion of a TMEDA/WFNA hypergolic in a bipropellant rocket engine; Proceedings of the AIAA Propulsion and Energy 2019 Forum; Indianapolis, IN, USA. 19–22 August 2019; DOI