Carbon Nanostructures Derived through Hypergolic Reaction of Conductive Polymers with Fuming Nitric Acid at Ambient Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MIS-5002772
'National Infrastructure in Nanotechnology, Advanced Materials and Micro-/Nanoelectronics" (MIS-5002772) which was implemented under the action ''Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme ''Competiti
MIS:5000432
''Human Resources Development, Education and Lifelong Learning" in the context of the project ''Strengthening Human Resources Research Potential via Doctorate Research" (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚY).
Project No. CZ.02.1.01/0.0/0.0/15_003/0000416
Operational Programme Research, Development and Education - Project No. CZ.02.1.01/0.0/0.0/15_003/0000416 of the Ministry of Education, Youth and Sports of the Czech Republic.
CZ.02.1.01/0.0/0.0/16_019/0000754
project Nano4Future reg. no. CZ.02.1.01/0.0/0.0/16_019/0000754 financed from ERDF/ESF.
PubMed
33805728
PubMed Central
PMC7999089
DOI
10.3390/molecules26061595
PII: molecules26061595
Knihovny.cz E-zdroje
- Klíčová slova
- ambient conditions, carbon nanostructures, conductive polymers, fuming nitric acid, hypergolics, rocket fuels,
- Publikační typ
- časopisecké články MeSH
Hypergolic systems rely on organic fuel and a powerful oxidizer that spontaneously ignites upon contact without any external ignition source. Although their main utilization pertains to rocket fuels and propellants, it is only recently that hypergolics has been established from our group as a new general method for the synthesis of different morphologies of carbon nanostructures depending on the hypergolic pair (organic fuel-oxidizer). In search of new pairs, the hypergolic mixture described here contains polyaniline as the organic source of carbon and fuming nitric acid as strong oxidizer. Specifically, the two reagents react rapidly and spontaneously upon contact at ambient conditions to afford carbon nanosheets. Further liquid-phase exfoliation of the nanosheets in dimethylformamide results in dispersed single layers exhibiting strong Tyndall effect. The method can be extended to other conductive polymers, such as polythiophene and polypyrrole, leading to the formation of different type carbon nanostructures (e.g., photolumincent carbon dots). Apart from being a new synthesis pathway towards carbon nanomaterials and a new type of reaction for conductive polymers, the present hypergolic pairs also provide a novel set of rocket bipropellants based on conductive polymers.
Department of Materials Science and Engineering University of Ioannina 45110 Ioannina Greece
Physics Department University of Ioannina 45110 Ioannina Greece
Zobrazit více v PubMed
Zare E.N., Makvandi P., Ashtari B., Rossi F., Motahari A., Perale G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020;63:1–22. doi: 10.1021/acs.jmedchem.9b00803. PubMed DOI
Tanguy N.R., Thompson M., Yan N. A review on advances in application of polyaniline for ammonia detection. Sens. Actuators B Chem. 2018;257:1044–1064. doi: 10.1016/j.snb.2017.11.008. DOI
Eskandari E., Kosari M., Davood Abadi Farahani M.H., Khiavi N.D., Saeedikhani M., Katal R., Zarinejad M. A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep. Purif. Technol. 2020;231:115901. doi: 10.1016/j.seppur.2019.115901. DOI
Kim J., Park S., Scherer N.F. Ultrafast Dynamics of Polarons in Conductive Polyaniline: Comparison of Primary and Secondary Doped Forms. J. Phys. Chem. B. 2008;112:15576–15587. doi: 10.1021/jp803984f. PubMed DOI
Munjal N.L., Parvatiyar M.G. Ignition of Hybrid Rocket Fuels with Fuming Nitric Acid as Oxidant. J. Spacecr. Rocket. 1974;11:428–430. doi: 10.2514/3.62093. DOI
Chalmpes N., Asimakopoulos G., Spyrou K., Vasilopoulos K.C., Bourlinos A.B., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Functional Carbon Materials Derived through Hypergolic Reactions at Ambient Conditions. Nanomaterials. 2020;10:566. doi: 10.3390/nano10030566. PubMed DOI PMC
Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI
Zhang S., Jiang S.-F., Huang B.-C., Shen X.-C., Chen W.-J., Zhou T.-P., Cheng H.-Y., Cheng B.-H., Wu C.-Z., Li W.-W., et al. Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nat. Sustain. 2020;3:753–760. doi: 10.1038/s41893-020-0538-1. DOI
Sevilla M., Fuertes A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon. 2009;47:2281–2289. doi: 10.1016/j.carbon.2009.04.026. DOI
Manawi Y.M., Ihsanullah, Samara A., Al-Ansari T., Atieh M.A. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials. 2018;11:822. doi: 10.3390/ma11050822. PubMed DOI PMC
Baikousi M., Chalmpes N., Spyrou K., Bourlinos A.B., Avgeropoulos A., Gournis D., Karakassides M.A. Direct Production of Carbon Nanosheets by Self-Ignition of Pyrophoric Lithium Dialkylamides in Air. Mater. Lett. 2019;254:58–61. doi: 10.1016/j.matlet.2019.07.019. DOI
Chalmpes N., Spyrou K., Bourlinos A.B., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Synthesis of Highly Crystalline Graphite from Spontaneous Ignition of In Situ Derived Acetylene and Chlorine at Ambient Conditions. Molecules. 2020;25:297. doi: 10.3390/molecules25020297. PubMed DOI PMC
Chalmpes N., Spyrou K., Vasilopoulos K.C., Bourlinos A.B., Moschovas D., Avgeropoulos A., Gioti C., Karakassides M.A., Gournis D. Hypergolics in Carbon Nanomaterials Synthesis: New Paradigms and Perspectives. Molecules. 2020;25:2207. doi: 10.3390/molecules25092207. PubMed DOI PMC
Chalmpes N., Tantis I., Bakandritsos A., Bourlinos A.B., Karakassides M.A., Gournis D. Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions. Nanomaterials. 2020;10:1564. doi: 10.3390/nano10081564. PubMed DOI PMC
Chalmpes N., Bourlinos A.B., Šedajová V., Kupka V., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Hypergolic Materials Synthesis through Reaction of Fuming Nitric Acid with Certain Cyclopentadienyl Compounds. C—J. Carbon Res. 2020;6:61. doi: 10.3390/c6040061. DOI
Chalmpes N., Bourlinos A.B., Talande S., Bakandritsos A., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair. Nanomaterials. 2021;11:1. doi: 10.3390/nano11010001. PubMed DOI PMC
Stovbun S.V., Shchegolikhin A.N., Usachev S.V., Khomik S.V., Medvedev S.P. Synthesis and testing of hypergolic ionic liquids for chemical propulsion. Acta Astronaut. 2017;135:110–113. doi: 10.1016/j.actaastro.2016.11.047. DOI
Schneider S., Hawkins T., Rosander M., Vaghjiani G., Chambreau S., Drake G. Ionic Liquids as Hypergolic Fuels. Energy Fuels. 2008;22:2871–2872. doi: 10.1021/ef800286b. DOI
Bhosale V.K., Kulkarni P.S. Ultrafast igniting, imidazolium based hypergolic ionic liquids with enhanced hydrophobicity. New J. Chem. 2017;41:1250–1258. doi: 10.1039/C6NJ03233H. DOI
Zohari N., Fareghi-Alamdari R., Sheibani N. Model development and design criteria of hypergolic imidazolium ionic liquids from ignition delay time and viscosity viewpoints. New J. Chem. 2020;44:7436–7449. doi: 10.1039/D0NJ00521E. DOI
Bhosale V.K., Jeong J., Choi J., Churchill D.G., Lee Y., Kwon S. Additive-promoted hypergolic ignition of ionic liquid with hydrogen peroxide. Combust. Flame. 2020;214:426–436. doi: 10.1016/j.combustflame.2020.01.013. DOI
Ding L., Li Q., Zhou D., Cui H., An H., Zhai J. Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite: Application to electro-reduction of bromate. J. Electroanal. Chem. 2012;668:44–50. doi: 10.1016/j.jelechem.2011.12.018. DOI
Kondawar S.B., Deshpande M.D., Agrawal S.P. Transport Properties of Conductive Polyaniline Nanocomposites Based on Carbon Nanotubes. Int. J. Compos. Mater. 2012;2:32–36. doi: 10.5923/j.cmaterials.20120203.03. DOI
Gao Y., Ying J., Xu X., Cai L. Nitrogen-Enriched Carbon Nanofibers Derived from Polyaniline and Their Capacitive Properties. Appl. Sci. 2018;8:1079. doi: 10.3390/app8071079. DOI
Roh J.-S. Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy. Carbon Lett. 2008;9:127–130. doi: 10.5714/CL.2008.9.2.127. DOI
Tsirka K., Katsiki A., Chalmpes N., Gournis D., Paipetis A.S. Mapping of Graphene Oxide and Single Layer Graphene Flakes—Defects Annealing and Healing. Front. Mater. 2018;5:37. doi: 10.3389/fmats.2018.00037. DOI
Bourlinos A.B., Giannelis E.P., Sanakis Y., Bakandritsos A., Karakassides M., Gjoka M., Petridis D. A graphite oxide-like carbogenic material derived from a molecular precursor. Carbon. 2006;44:1906–1912. doi: 10.1016/j.carbon.2006.02.008. DOI
Champi A., Marques F.C. Mechanical and vibrational properties of carbon nitride alloys. Braz. J. Phys. 2006;36:462–465. doi: 10.1590/S0103-97332006000300062. DOI
Dhivya C., Vandarkuzhali S.A.A., Radha N. Antimicrobial activities of nanostructured polyanilines doped with aromatic nitro compounds. Arab. J. Chem. 2019;12:3785–3798. doi: 10.1016/j.arabjc.2015.12.005. DOI
Zhang L. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of β-naphthalenesulfonic acid. Electrochim. Acta. 2007;52:6969–6975. doi: 10.1016/j.electacta.2007.05.012. DOI
Su N. Polyaniline-Doped Spherical Polyelectrolyte Brush Nanocomposites with Enhanced Electrical Conductivity, Thermal Stability, and Solubility Property. Polymers. 2015;7:1599–1616. doi: 10.3390/polym7091473. DOI
Yuan D.-S., Zhou T.-X., Zhou S.-L., Zou W.-J., Mo S.-S., Xia N.-N. Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochem. Commun. 2011;13:242–246. doi: 10.1016/j.elecom.2010.12.023. DOI
Zornitta R.L., García-Mateos F.J., Lado J.J., Rodríguez-Mirasol J., Cordero T., Hammer P., Ruotolo L.A.M. High-performance activated carbon from polyaniline for capacitive deionization. Carbon. 2017;123:318–333. doi: 10.1016/j.carbon.2017.07.071. DOI
Li X., Li X., Wang G. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method. Appl. Surf. Sci. 2005;249:266–270. doi: 10.1016/j.apsusc.2004.12.001. DOI
Kebiche H., Poncin-Epaillard F., Haddaoui N., Debarnot D. A route for the synthesis of polyaniline-based hybrid nanocomposites. J. Mater. Sci. 2020;55:5782–5794. doi: 10.1007/s10853-020-04406-y. DOI
Rommozzi E., Zannotti M., Giovannetti R., D’Amato C.A., Ferraro S., Minicucci M., Gunnella R., Di Cicco A. Reduced Graphene Oxide/TiO2 Nanocomposite: From Synthesis to Characterization for Efficient Visible Light Photocatalytic Applications. Catalysts. 2018;8:598. doi: 10.3390/catal8120598. DOI
Xie W., Ng K.M., Weng L.-T., Chan C.-M. Characterization of hydrogenated graphite powder by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. RSC Adv. 2016;6:80649–80654. doi: 10.1039/C6RA17954A. DOI
Błoński P., Tuček J., Sofer Z., Mazánek V., Petr M., Pumera M., Otyepka M., Zbořil R. Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. J. Am. Chem. Soc. 2017;139:3171–3180. doi: 10.1021/jacs.6b12934. PubMed DOI PMC
Yang G., Hu H., Zhou Y., Hu Y., Huang H., Nie F., Shi W. Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor. Sci. Rep. 2012;2:698. doi: 10.1038/srep00698. PubMed DOI PMC
Lud S.Q., Steenackers M., Jordan R., Bruno P., Gruen D.M., Feulner P., Garrido J.A., Stutzmann M. Chemical Grafting of Biphenyl Self-Assembled Monolayers on Ultrananocrystalline Diamond. J. Am. Chem. Soc. 2006;128:16884–16891. doi: 10.1021/ja0657049. PubMed DOI
Luo C., Ji X., Hou S., Eidson N., Fan X., Liang Y., Deng T., Jiang J., Wang C. Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries. Adv. Mater. 2018;30:1706498. doi: 10.1002/adma.201706498. PubMed DOI
Bourlinos A.B., Georgakilas V., Zboril R., Steriotis T.A., Stubos A.K. Liquid-Phase Exfoliation of Graphite towards Solubilized Graphenes. Small. 2009;5:1841–1845. doi: 10.1002/smll.200900242. PubMed DOI
Grana E., Katsigiannopoulos D., Karantzalis A.E., Baikousi M., Avgeropoulos A. Synthesis and molecular characterization of polythiophene and polystyrene copolymers: Simultaneous preparation of diblock and miktoarm copolymers. Eur. Polym. J. 2013;49:1089–1097. doi: 10.1016/j.eurpolymj.2013.01.011. DOI
Grana E., Katsigiannopoulos D., Avgeropoulos A., Goulas V. Synthesis and Molecular Characterization of Polythiophene Block Co-, Ter-Polymers and Four-Arm Star Homopolymer. Int. J. Polym. Anal. Charact. 2008;13:108–118. doi: 10.1080/10236660801905692. DOI
Dimos K. Tuning Carbon Dots’ Optoelectronic Properties with Polymers. Polymers. 2018;10:1312. doi: 10.3390/polym10121312. PubMed DOI PMC
Zlotin S.G., Dalinger I.L., Makhova N.N., Tartakovsky V.A. Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. Russ. Chem. Rev. 2020;89:1–54. doi: 10.1070/RCR4908. DOI
Bobrowski M., Liwo A., Ołdziej S., Jeziorek D., Ossowski T. CAS MCSCF/CAS MCQDPT2 Study of the Mechanism of Singlet Oxygen Addition to 1,3-Butadiene and Benzene. J. Am. Chem. Soc. 2000;122:8112–8119. doi: 10.1021/ja001185c. DOI
Zapsas G., Moschovas D., Ntetsikas K., Karydis-Messinis A., Chalmpes N., Kouloumpis A., Gournis D., Zafeiropoulos N.E., Avgeropoulos A. Segregation of Maghemite Nanoparticles within Symmetric Diblock Copolymer and Triblock Terpolymer Patterns under Solvent Vapor Annealing. Materials. 2020;13:1286. doi: 10.3390/ma13061286. PubMed DOI PMC