Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions

. 2020 Aug 09 ; 10 (8) : . [epub] 20200809

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32784885

Grantová podpora
MIS 5002772 Ministry of National Education and Religious Affairs
MIS-5000432 European Social Fund
EXPRO, 19-27454X Grantová Agentura České Republiky

Herein, we present an interesting route to carbon derived from ferrocene without pyrolysis. Specifically, the direct contact of the metallocene with liquid bromine at ambient conditions released rapidly and spontaneously carbon soot, the latter containing dense spheres, nanosheets, and hollow spheres. The derived carbon carried surface C-Br bonds that permitted postfunctionalization of the solid through nucleophilic substitution. For instance, treatment with diglycolamine led to covalent attachment of the amine onto the carbon surface, thus conferring aqueous dispersability to t he solid. The dispersed solid exhibited visible photoluminescence under UV irradiation as a result of surface passivation by the amine. Hence, the present method not only allowed a rapid and spontaneous carbon formation at ambient conditions, but also surface engineering of the particles to impart new properties (e.g., photoluminescence).

Zobrazit více v PubMed

Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI

Baikousi M., Chalmpes N., Spyrou K., Bourlinos A.B., Avgeropoulos A., Gournis D., Karakassides M.A. Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Mater. Lett. 2019;254:58–61. doi: 10.1016/j.matlet.2019.07.019. DOI

Chalmpes N., Spyrou K., Bourlinos A.B., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Synthesis of highly crystalline graphite from spontaneous ignition of in situ derived acetylene and chlorine at ambient conditions. Molecules. 2020;25:297. doi: 10.3390/molecules25020297. PubMed DOI PMC

Chalmpes N., Asimakopoulos G., Spyrou K., Vasilopoulos K.C., Bourlinos A.B., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Functional carbon materials derived through hypergolic reactions at ambient conditions. Nanomaterials. 2020;10:566. doi: 10.3390/nano10030566. PubMed DOI PMC

Chalmpes N., Spyrou K., Vasilopoulos K.C., Bourlinos A.B., Moschovas D., Avgeropoulos A., Gioti C., Karakassides M.A., Gournis D. Hypergolics in carbon nanomaterials synthesis: New paradigms and perspectives. Molecules. 2020;25:2207. doi: 10.3390/molecules25092207. PubMed DOI PMC

Hou H., Schaper A.K., Weller F., Greiner A. Carbon nanotubes and spheres produced by modified ferrocene pyrolysis. Chem. Mater. 2002;14:3990–3994. doi: 10.1021/cm021206x. DOI

Hu Z.D., Hu Y.F., Chen Q., Duan X.F., Peng L.M. Synthesis and characterizations of amorphous carbon nanotubes by pyrolysis of ferrocene confined within AAM templates. J. Phys. Chem. B. 2006;110:8263–8267. doi: 10.1021/jp0568475. PubMed DOI

Riquelme J., Garzón C., Bergmann C., Geshev J., Quijada R. Development of multifunctional polymer nanocomposites with carbon-based hybrid nanostructures synthesized from ferrocene. Eur. Polym. J. 2016;75:200–209. doi: 10.1016/j.eurpolymj.2015.12.007. DOI

Su W., He M., Xing J., Zhong Y., Li Z. Facile synthesis of porous bifunctional Fe3O4@Y2O3:Ln nanocomposites using carbonized ferrocene as templates. RSC Adv. 2013;3:25970–25975. doi: 10.1039/c3ra44986f. DOI

Nesmeyanov A.N., Anisimov K.N., Kolobova N.E., Zlotina I.B. Action of bromine and chlorine on cyclopentadienylmanganesetricarbonyl. Bull. Acad. Sci. USSR Div. Chem. Sci. 1968;17:858–860. doi: 10.1007/BF00905769. DOI

Poli R., Harvey J.N. Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev. 2003;32:1–8. doi: 10.1039/b200675h. PubMed DOI

Majewska J., Michalkiewicz B. Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A. 2013;111:1013–1016. doi: 10.1007/s00339-013-7698-z. DOI

Roh J.S. Structural study of the activated carbon fiber using laser Raman spectroscopy. Carbon Lett. 2008;9:127–130. doi: 10.5714/CL.2008.9.2.127. DOI

Mansour H., Letifi H., Bargougui R., De Almeida-Didry S., Negulescu B., Autret-Lambert C., Gadri A., Ammar S. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: Polyol and precipitation. Appl. Phys. A. 2017;123:787. doi: 10.1007/s00339-017-1408-1. DOI

Jankovský O., Šimek P., Klimová K., Sedmidubský D., Matějková S., Pumera M., Sofer Z. Towards graphene bromide: Bromination of graphite oxide. Nanoscale. 2014;6:6065–6074. doi: 10.1039/C4NR01154F. PubMed DOI

Zheng J., Liu H.T., Wu B., Di C.A., Guo Y.L., Wu T., Yu G., Liu Y.Q., Zhu D.B. Production of graphite chloride and bromide using microwave sparks. Sci. Rep. 2012;2:662. doi: 10.1038/srep00662. PubMed DOI PMC

Xie W., Ng K.M., Weng L.T., Chan C.M. Characterization of hydrogenated graphite powder by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. RSC Adv. 2016;6:80649–80654. doi: 10.1039/C6RA17954A. DOI

Zou G., Yu D., Lu J., Wang D., Jiang C., Qian Y. A self-generated template route to hollow carbon nanospheres in a short time. Solid State Commun. 2004;131:749–752. doi: 10.1016/j.ssc.2004.07.004. DOI

Boi F.S., Guo J., Medranda D., Borowiec J., Liu D., Wang S., Zhang X., He Y., Xiang G. Observation of curling effects in tubular and planar graphene-like structures by pyrolysis of ferrocene/dichlorobenzene mixtures. Mater. Today Chem. 2018;10:120–127. doi: 10.1016/j.mtchem.2018.08.002. DOI

Bourlinos A.B., Zbořil R., Petr J., Bakandritsos A., Krysmann M., Giannelis E.P. Luminescent surface quaternized carbon dots. Chem. Mater. 2012;24:6–8. doi: 10.1021/cm2026637. DOI

Essner J.B., Kist J.A., Polo-Parada L., Baker G.A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 2018;30:1878–1887. doi: 10.1021/acs.chemmater.7b04446. DOI

Li L., Dong T. Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. J. Mater. Chem. C. 2018;6:7944–7970. doi: 10.1039/C7TC05878K. DOI

Potsi G., Bourlinos A.B., Mouselimis V., Poláková K., Chalmpes N., Gournis D., Kalytchuk S., Tomanec O., Błoński P., Medveď M., et al. Intrinsic photoluminescence of amine-functionalized graphene derivatives for bioimaging applications. Appl. Mater. Today. 2019;17:112–122. doi: 10.1016/j.apmt.2019.08.002. DOI

Das R., Bandyopadhyay R., Pramanik P. Carbon quantum dots from natural resource: A review. Mater. Today Chem. 2018;8:96–109. doi: 10.1016/j.mtchem.2018.03.003. DOI

Chu K.W., Lee S.L., Chang C.J., Liu L. Recent progress of carbon dot precursors and photocatalysis applications. Polymers. 2019;11:689. doi: 10.3390/polym11040689. PubMed DOI PMC

Wang X., Feng Y., Dong P., Huang J. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front. Chem. 2019;7 doi: 10.3389/fchem.2019.00671. PubMed DOI PMC

2-(2-Aminoethoxy)ethanol. [(accessed on 23 April 2020)]; Available online: https://www.sigmaaldrich.com/catalog/product/aldrich/a54059?lang=en&region=GR.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...