Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MIS 5002772
Ministry of National Education and Religious Affairs
MIS-5000432
European Social Fund
EXPRO, 19-27454X
Grantová Agentura České Republiky
PubMed
32784885
PubMed Central
PMC7466611
DOI
10.3390/nano10081564
PII: nano10081564
Knihovny.cz E-zdroje
- Klíčová slova
- ambient conditions, bromine, carbon, ferrocene, rapid synthesis,
- Publikační typ
- časopisecké články MeSH
Herein, we present an interesting route to carbon derived from ferrocene without pyrolysis. Specifically, the direct contact of the metallocene with liquid bromine at ambient conditions released rapidly and spontaneously carbon soot, the latter containing dense spheres, nanosheets, and hollow spheres. The derived carbon carried surface C-Br bonds that permitted postfunctionalization of the solid through nucleophilic substitution. For instance, treatment with diglycolamine led to covalent attachment of the amine onto the carbon surface, thus conferring aqueous dispersability to t he solid. The dispersed solid exhibited visible photoluminescence under UV irradiation as a result of surface passivation by the amine. Hence, the present method not only allowed a rapid and spontaneous carbon formation at ambient conditions, but also surface engineering of the particles to impart new properties (e.g., photoluminescence).
Department of Materials Science and Engineering University of Ioannina 45110 Ioannina Greece
Physics Department University of Ioannina 45110 Ioannina Greece
Zobrazit více v PubMed
Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI
Baikousi M., Chalmpes N., Spyrou K., Bourlinos A.B., Avgeropoulos A., Gournis D., Karakassides M.A. Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Mater. Lett. 2019;254:58–61. doi: 10.1016/j.matlet.2019.07.019. DOI
Chalmpes N., Spyrou K., Bourlinos A.B., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Synthesis of highly crystalline graphite from spontaneous ignition of in situ derived acetylene and chlorine at ambient conditions. Molecules. 2020;25:297. doi: 10.3390/molecules25020297. PubMed DOI PMC
Chalmpes N., Asimakopoulos G., Spyrou K., Vasilopoulos K.C., Bourlinos A.B., Moschovas D., Avgeropoulos A., Karakassides M.A., Gournis D. Functional carbon materials derived through hypergolic reactions at ambient conditions. Nanomaterials. 2020;10:566. doi: 10.3390/nano10030566. PubMed DOI PMC
Chalmpes N., Spyrou K., Vasilopoulos K.C., Bourlinos A.B., Moschovas D., Avgeropoulos A., Gioti C., Karakassides M.A., Gournis D. Hypergolics in carbon nanomaterials synthesis: New paradigms and perspectives. Molecules. 2020;25:2207. doi: 10.3390/molecules25092207. PubMed DOI PMC
Hou H., Schaper A.K., Weller F., Greiner A. Carbon nanotubes and spheres produced by modified ferrocene pyrolysis. Chem. Mater. 2002;14:3990–3994. doi: 10.1021/cm021206x. DOI
Hu Z.D., Hu Y.F., Chen Q., Duan X.F., Peng L.M. Synthesis and characterizations of amorphous carbon nanotubes by pyrolysis of ferrocene confined within AAM templates. J. Phys. Chem. B. 2006;110:8263–8267. doi: 10.1021/jp0568475. PubMed DOI
Riquelme J., Garzón C., Bergmann C., Geshev J., Quijada R. Development of multifunctional polymer nanocomposites with carbon-based hybrid nanostructures synthesized from ferrocene. Eur. Polym. J. 2016;75:200–209. doi: 10.1016/j.eurpolymj.2015.12.007. DOI
Su W., He M., Xing J., Zhong Y., Li Z. Facile synthesis of porous bifunctional Fe3O4@Y2O3:Ln nanocomposites using carbonized ferrocene as templates. RSC Adv. 2013;3:25970–25975. doi: 10.1039/c3ra44986f. DOI
Nesmeyanov A.N., Anisimov K.N., Kolobova N.E., Zlotina I.B. Action of bromine and chlorine on cyclopentadienylmanganesetricarbonyl. Bull. Acad. Sci. USSR Div. Chem. Sci. 1968;17:858–860. doi: 10.1007/BF00905769. DOI
Poli R., Harvey J.N. Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev. 2003;32:1–8. doi: 10.1039/b200675h. PubMed DOI
Majewska J., Michalkiewicz B. Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A. 2013;111:1013–1016. doi: 10.1007/s00339-013-7698-z. DOI
Roh J.S. Structural study of the activated carbon fiber using laser Raman spectroscopy. Carbon Lett. 2008;9:127–130. doi: 10.5714/CL.2008.9.2.127. DOI
Mansour H., Letifi H., Bargougui R., De Almeida-Didry S., Negulescu B., Autret-Lambert C., Gadri A., Ammar S. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: Polyol and precipitation. Appl. Phys. A. 2017;123:787. doi: 10.1007/s00339-017-1408-1. DOI
Jankovský O., Šimek P., Klimová K., Sedmidubský D., Matějková S., Pumera M., Sofer Z. Towards graphene bromide: Bromination of graphite oxide. Nanoscale. 2014;6:6065–6074. doi: 10.1039/C4NR01154F. PubMed DOI
Zheng J., Liu H.T., Wu B., Di C.A., Guo Y.L., Wu T., Yu G., Liu Y.Q., Zhu D.B. Production of graphite chloride and bromide using microwave sparks. Sci. Rep. 2012;2:662. doi: 10.1038/srep00662. PubMed DOI PMC
Xie W., Ng K.M., Weng L.T., Chan C.M. Characterization of hydrogenated graphite powder by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. RSC Adv. 2016;6:80649–80654. doi: 10.1039/C6RA17954A. DOI
Zou G., Yu D., Lu J., Wang D., Jiang C., Qian Y. A self-generated template route to hollow carbon nanospheres in a short time. Solid State Commun. 2004;131:749–752. doi: 10.1016/j.ssc.2004.07.004. DOI
Boi F.S., Guo J., Medranda D., Borowiec J., Liu D., Wang S., Zhang X., He Y., Xiang G. Observation of curling effects in tubular and planar graphene-like structures by pyrolysis of ferrocene/dichlorobenzene mixtures. Mater. Today Chem. 2018;10:120–127. doi: 10.1016/j.mtchem.2018.08.002. DOI
Bourlinos A.B., Zbořil R., Petr J., Bakandritsos A., Krysmann M., Giannelis E.P. Luminescent surface quaternized carbon dots. Chem. Mater. 2012;24:6–8. doi: 10.1021/cm2026637. DOI
Essner J.B., Kist J.A., Polo-Parada L., Baker G.A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 2018;30:1878–1887. doi: 10.1021/acs.chemmater.7b04446. DOI
Li L., Dong T. Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. J. Mater. Chem. C. 2018;6:7944–7970. doi: 10.1039/C7TC05878K. DOI
Potsi G., Bourlinos A.B., Mouselimis V., Poláková K., Chalmpes N., Gournis D., Kalytchuk S., Tomanec O., Błoński P., Medveď M., et al. Intrinsic photoluminescence of amine-functionalized graphene derivatives for bioimaging applications. Appl. Mater. Today. 2019;17:112–122. doi: 10.1016/j.apmt.2019.08.002. DOI
Das R., Bandyopadhyay R., Pramanik P. Carbon quantum dots from natural resource: A review. Mater. Today Chem. 2018;8:96–109. doi: 10.1016/j.mtchem.2018.03.003. DOI
Chu K.W., Lee S.L., Chang C.J., Liu L. Recent progress of carbon dot precursors and photocatalysis applications. Polymers. 2019;11:689. doi: 10.3390/polym11040689. PubMed DOI PMC
Wang X., Feng Y., Dong P., Huang J. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front. Chem. 2019;7 doi: 10.3389/fchem.2019.00671. PubMed DOI PMC
2-(2-Aminoethoxy)ethanol. [(accessed on 23 April 2020)]; Available online: https://www.sigmaaldrich.com/catalog/product/aldrich/a54059?lang=en®ion=GR.
Editorial for the Special Issue on "Graphene-Related Materials: Synthesis and Applications"
Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair