Natural and magnetic circular dichroism spectra of nucleosides: effect of the dynamics and environment
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35423314
PubMed Central
PMC8695171
DOI
10.1039/d1ra00076d
PII: d1ra00076d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Chiroptical spectroscopic methods are excellent tools to study structure and interactions of biomolecules. However, their sensitivity to different structural aspects varies. To understand the dependence of absorption, electronic and magnetic circular dichroism (ECD, MCD) intensities on the structure, dynamics and environment, we measured and simulated spectra of nucleosides and other nucleic acid model components. The conformation space was explored by molecular dynamics (MD), the electronic spectra were generated using time dependent density functional theory (TDDFT). The sum over state (SOS) method was employed for MCD. The results show that accounting for the dynamics is crucial for reproduction of the experiment. While unpolarized absorption spectroscopy is relatively indifferent, ECD reflects the conformation and geometry dispersion more. MCD spectra provide variable response dependent on the wavelength and structural change. In general, MCD samples the structure more locally than ECD. Simple computational tests suggest that the optical spectroscopies coupled with the computational tools provide useful information about nucleic acid components, including base pairing and stacking.
Zobrazit více v PubMed
Follmann H. Kuntz I. Zacharias W. Eur. J. Biochem. 1975;58:31–41. doi: 10.1111/j.1432-1033.1975.tb02345.x. PubMed DOI
Norman P. Parello J. Polavarapu P. L. Linares M. Phys. Chem. Chem. Phys. 2015;17:21866–21879. doi: 10.1039/C5CP02481A. PubMed DOI
Di Meo F. Pedersen M. N. Rubio-Magnieto J. Surin M. Linares M. Norman P. J. Phys. Chem. Lett. 2015;6:355–359. doi: 10.1021/jz502696t. PubMed DOI
Fahleson T. Kauczor J. Norman P. Santoro F. Improta R. Coriani S. J. Phys. Chem. A. 2015;119:5476–5489. doi: 10.1021/jp512468k. PubMed DOI
Gray D. M., Ratliff R. L. and Vaughan M. R., Methods in Enzymology, Academic Press, 1992, vol. 211, pp. 389–406 PubMed
Kypr J. Kejnovská I. Renčiuk D. Vorlíčková M. Nucleic Acids Res. 2009;37:1713–1725. doi: 10.1093/nar/gkp026. PubMed DOI PMC
Khani S. K. Faber R. Santoro F. Hättig C. Coriani S. J. Chem. Theory Comput. 2019;15:1242–1254. doi: 10.1021/acs.jctc.8b00930. PubMed DOI
Corcelli S. A. Skinner J. L. J. Phys. Chem. A. 2005;109:6154–6165. doi: 10.1021/jp0506540. PubMed DOI
Stare J. Panek J. Eckert J. Grdadolnik J. Mavri J. Hadži D. J. Phys. Chem. A. 2008;112:1576–1586. doi: 10.1021/jp077107u. PubMed DOI
Bouř P. Michalík D. Kapitán J. J. Chem. Phys. 2005;122:144501. doi: 10.1063/1.1877272. PubMed DOI
Furche F. Ahlrichs R. Wachsmann C. Weber E. Sobanski A. Vögtle F. Grimme S. J. Am. Chem. Soc. 2000;122:1717–1724. doi: 10.1021/ja991960s. DOI
Furche F. Ahlrichs R. J. Chem. Phys. 2002;117:7433–7447. doi: 10.1063/1.1508368. DOI
Štěpánek P. Bouř P. J. Comput. Chem. 2015;36:723–730. doi: 10.1002/jcc.23845. PubMed DOI
Štěpánek P. Bouř P. J. Comput. Chem. 2013;34:1531–1539. doi: 10.1002/jcc.23277. PubMed DOI
Fasman G. D. Schaffhausen B. Goldsmith L. Adler A. Biochemistry. 1970;9:2814–2822. doi: 10.1021/bi00816a010. PubMed DOI
Johnson Jr W. C., in Landolt Bornstein Numerical Data and Functional Relationships in Science and Technology, ed. W. Saenger, Springer-Verlag, Berlin, 1990, vol. 1, pp. 1–24
Voelter W. Records R. Bunnenberg E. Djerassi C. J. Am. Chem. Soc. 1969;91:6165–6172. doi: 10.1021/ja01050a042. DOI
Loco D. Jurinovich S. Bari L. Mennucci B. Phys. Chem. Chem. Phys. 2016;18:866–877. doi: 10.1039/C5CP06341H. PubMed DOI
Jurinovich S. Viani L. Prandi I. G. Renger T. Mennucci B. Phys. Chem. Chem. Phys. 2015;17:14405–14416. doi: 10.1039/C4CP05647G. PubMed DOI
Nørby M. S. Olsen J. M. H. Steinmann C. Kongsted J. J. Chem. Theory Comput. 2017;13:4442–4451. doi: 10.1021/acs.jctc.7b00712. PubMed DOI
Reinholdt P. Nørby M. S. Kongsted J. J. Chem. Theory Comput. 2018;14:6391–6404. doi: 10.1021/acs.jctc.8b00660. PubMed DOI
Becke A. D. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Takano Y. Houk K. N. J. Chem. Theory Comput. 2005;1:70–77. doi: 10.1021/ct049977a. PubMed DOI
Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Yanai T. Tew D. Handy N. C. Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16 Rev. A.03, Gaussian, Inc., Wallingford, CT, 2016
Bouř P., Guvcde, electronic spectra calculations, Academy of Sciences, Prague, 2019
Shaw D. E., Desmond Molecular Dynamics System, D. E. Shaw Research, New York, 2020
Kaminski G. A. Friesner R. A. Tirado-Rives J. Jorgensen W. L. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI
Jorgensen W. L. Chandrasekhar J. Madura J. D. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Schrödinger Release 2020-4: Maestro, Schrödinger, New York, 2020
Hopmann K. H. Ruud K. Pecul M. Kudelski A. Dračínský M. Bouř P. J. Phys. Chem. B. 2011;115:4128–4137. doi: 10.1021/jp110662w. PubMed DOI
Palivec V. Kopecký V. Jungwirth P. Bouř P. Kaminský J. Martinez-Seara H. Phys. Chem. Chem. Phys. 2020;22:1983–1993. doi: 10.1039/C9CP05682C. PubMed DOI
Bouř P. Keiderling T. A. J. Chem. Phys. 2002;117:4126–4132. doi: 10.1063/1.1498468. DOI
Yamamoto S. Li X. Ruud K. Bouř P. J. Chem. Theory Comput. 2012;8:977–985. doi: 10.1021/ct200714h. PubMed DOI
Klamt A. Schuurmann G. J. Chem. Soc., Perkin Trans. 2. 1993:799–805. doi: 10.1039/P29930000799. DOI
Buděšínský M. Daněček P. Bednárová L. Kapitán J. Baumruk V. Bouř P. J. Phys. Chem. A. 2008;112:8633–8640. doi: 10.1021/jp806181q. PubMed DOI
Elstner M. Jalkanen K. J. Knapp-Mohammady M. Frauenheim T. Suhai S. Chem. Phys. 2000;256:15–27. doi: 10.1016/S0301-0104(00)00100-2. DOI
Yoneda J. D. Albuquerque M. G. Zaccur K. Seidl P. R. Wheeler R. A. Boesch S. E. de Alencastro R. B. de Souza M. C. Ferreira V. F. J. Mol. Struct.: THEOCHEM. 2006;778:97–103. doi: 10.1016/j.theochem.2006.08.047. DOI
Voelter W. Records R. Bunnenberg E. Djerassi C. J. Am. Chem. Soc. 1968;90:6163–6170. doi: 10.1021/ja01024a039. PubMed DOI
Lin N. Solheim H. Zhao X. Santoro F. Ruud K. J. Chem. Theory Comput. 2013;9:1557–1567. doi: 10.1021/ct301101h. PubMed DOI
Ferrer F. J. A. Santoro F. Phys. Chem. Chem. Phys. 2012;14:13549–13563. doi: 10.1039/C2CP41169E. PubMed DOI
Santoro F. Barone V. Int. J. Quantum Chem. 2010;110:476–486. doi: 10.1002/qua.22197. DOI
Kaminský J. Chalupský J. Štěpánek P. Křiž J. Bouř P. J. Phys. Chem. A. 2017;121:9064–9073. doi: 10.1021/acs.jpca.7b10120. PubMed DOI
Šebek J. Kejík Z. Bouř P. J. Phys. Chem. A. 2006;110:4702–4711. doi: 10.1021/jp060813v. PubMed DOI
Stephens P. J. Adv. Chem. Phys. 1976;35:197–264.
Stephens P. J. J. Chem. Phys. 1970;52:3489–3516. doi: 10.1063/1.1673514. DOI
Stephens P. J. Annu. Rev. Phys. Chem. 1974;25:201–232. doi: 10.1146/annurev.pc.25.100174.001221. DOI
Štěpánek P. Straka M. Šebestík J. Bouř P. Chem. Phys. Lett. 2016;647:117–121. doi: 10.1016/j.cplett.2016.01.047. DOI
Štěpánek P. Straka M. Andrushchenko V. Bouř P. J. Chem. Phys. 2013;138:151103. doi: 10.1063/1.4802763. PubMed DOI
Štěpánek P. Andrushchenko V. Ruud K. Bouř P. J. Phys. Chem. A. 2012;116:778–783. doi: 10.1021/jp2105192. PubMed DOI
Kaminský J. Kubelka J. Bouř P. J. Phys. Chem. A. 2011;115:1724–1742. PubMed
Mennucci B. Cappelli C. Cammi R. Tomasi J. Chirality. 2011;23:717–729. doi: 10.1002/chir.20984. PubMed DOI
Zhang C. Lu C. Jing Z. Wu C. Piquemal J. P. Ponder J. W. Ren P. J. Chem. Theory Comput. 2018;14:2084–2108. doi: 10.1021/acs.jctc.7b01169. PubMed DOI PMC
Barth G. Bunnenberg E. Djerassi C. Anal. Biochem. 1972;48:471–479. doi: 10.1016/0003-2697(72)90100-5. PubMed DOI
Cantor C. R. Warshaw M. M. Shapiro H. Biopolymers. 1970;9:1059–1077. doi: 10.1002/bip.1970.360090909. PubMed DOI
Andrushchenko V. Wieser H. Bouř P. J. Phys. Chem. B. 2004;108:3899–3911. doi: 10.1021/jp037106b. DOI