Natural and magnetic circular dichroism spectra of nucleosides: effect of the dynamics and environment

. 2021 Feb 17 ; 11 (14) : 8411-8419. [epub] 20210223

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35423314

Chiroptical spectroscopic methods are excellent tools to study structure and interactions of biomolecules. However, their sensitivity to different structural aspects varies. To understand the dependence of absorption, electronic and magnetic circular dichroism (ECD, MCD) intensities on the structure, dynamics and environment, we measured and simulated spectra of nucleosides and other nucleic acid model components. The conformation space was explored by molecular dynamics (MD), the electronic spectra were generated using time dependent density functional theory (TDDFT). The sum over state (SOS) method was employed for MCD. The results show that accounting for the dynamics is crucial for reproduction of the experiment. While unpolarized absorption spectroscopy is relatively indifferent, ECD reflects the conformation and geometry dispersion more. MCD spectra provide variable response dependent on the wavelength and structural change. In general, MCD samples the structure more locally than ECD. Simple computational tests suggest that the optical spectroscopies coupled with the computational tools provide useful information about nucleic acid components, including base pairing and stacking.

Zobrazit více v PubMed

Follmann H. Kuntz I. Zacharias W. Eur. J. Biochem. 1975;58:31–41. doi: 10.1111/j.1432-1033.1975.tb02345.x. PubMed DOI

Norman P. Parello J. Polavarapu P. L. Linares M. Phys. Chem. Chem. Phys. 2015;17:21866–21879. doi: 10.1039/C5CP02481A. PubMed DOI

Di Meo F. Pedersen M. N. Rubio-Magnieto J. Surin M. Linares M. Norman P. J. Phys. Chem. Lett. 2015;6:355–359. doi: 10.1021/jz502696t. PubMed DOI

Fahleson T. Kauczor J. Norman P. Santoro F. Improta R. Coriani S. J. Phys. Chem. A. 2015;119:5476–5489. doi: 10.1021/jp512468k. PubMed DOI

Gray D. M., Ratliff R. L. and Vaughan M. R., Methods in Enzymology, Academic Press, 1992, vol. 211, pp. 389–406 PubMed

Kypr J. Kejnovská I. Renčiuk D. Vorlíčková M. Nucleic Acids Res. 2009;37:1713–1725. doi: 10.1093/nar/gkp026. PubMed DOI PMC

Khani S. K. Faber R. Santoro F. Hättig C. Coriani S. J. Chem. Theory Comput. 2019;15:1242–1254. doi: 10.1021/acs.jctc.8b00930. PubMed DOI

Corcelli S. A. Skinner J. L. J. Phys. Chem. A. 2005;109:6154–6165. doi: 10.1021/jp0506540. PubMed DOI

Stare J. Panek J. Eckert J. Grdadolnik J. Mavri J. Hadži D. J. Phys. Chem. A. 2008;112:1576–1586. doi: 10.1021/jp077107u. PubMed DOI

Bouř P. Michalík D. Kapitán J. J. Chem. Phys. 2005;122:144501. doi: 10.1063/1.1877272. PubMed DOI

Furche F. Ahlrichs R. Wachsmann C. Weber E. Sobanski A. Vögtle F. Grimme S. J. Am. Chem. Soc. 2000;122:1717–1724. doi: 10.1021/ja991960s. DOI

Furche F. Ahlrichs R. J. Chem. Phys. 2002;117:7433–7447. doi: 10.1063/1.1508368. DOI

Štěpánek P. Bouř P. J. Comput. Chem. 2015;36:723–730. doi: 10.1002/jcc.23845. PubMed DOI

Štěpánek P. Bouř P. J. Comput. Chem. 2013;34:1531–1539. doi: 10.1002/jcc.23277. PubMed DOI

Fasman G. D. Schaffhausen B. Goldsmith L. Adler A. Biochemistry. 1970;9:2814–2822. doi: 10.1021/bi00816a010. PubMed DOI

Johnson Jr W. C., in Landolt Bornstein Numerical Data and Functional Relationships in Science and Technology, ed. W. Saenger, Springer-Verlag, Berlin, 1990, vol. 1, pp. 1–24

Voelter W. Records R. Bunnenberg E. Djerassi C. J. Am. Chem. Soc. 1969;91:6165–6172. doi: 10.1021/ja01050a042. DOI

Loco D. Jurinovich S. Bari L. Mennucci B. Phys. Chem. Chem. Phys. 2016;18:866–877. doi: 10.1039/C5CP06341H. PubMed DOI

Jurinovich S. Viani L. Prandi I. G. Renger T. Mennucci B. Phys. Chem. Chem. Phys. 2015;17:14405–14416. doi: 10.1039/C4CP05647G. PubMed DOI

Nørby M. S. Olsen J. M. H. Steinmann C. Kongsted J. J. Chem. Theory Comput. 2017;13:4442–4451. doi: 10.1021/acs.jctc.7b00712. PubMed DOI

Reinholdt P. Nørby M. S. Kongsted J. J. Chem. Theory Comput. 2018;14:6391–6404. doi: 10.1021/acs.jctc.8b00660. PubMed DOI

Becke A. D. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Takano Y. Houk K. N. J. Chem. Theory Comput. 2005;1:70–77. doi: 10.1021/ct049977a. PubMed DOI

Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Yanai T. Tew D. Handy N. C. Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16 Rev. A.03, Gaussian, Inc., Wallingford, CT, 2016

Bouř P., Guvcde, electronic spectra calculations, Academy of Sciences, Prague, 2019

Shaw D. E., Desmond Molecular Dynamics System, D. E. Shaw Research, New York, 2020

Kaminski G. A. Friesner R. A. Tirado-Rives J. Jorgensen W. L. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI

Jorgensen W. L. Chandrasekhar J. Madura J. D. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Schrödinger Release 2020-4: Maestro, Schrödinger, New York, 2020

Hopmann K. H. Ruud K. Pecul M. Kudelski A. Dračínský M. Bouř P. J. Phys. Chem. B. 2011;115:4128–4137. doi: 10.1021/jp110662w. PubMed DOI

Palivec V. Kopecký V. Jungwirth P. Bouř P. Kaminský J. Martinez-Seara H. Phys. Chem. Chem. Phys. 2020;22:1983–1993. doi: 10.1039/C9CP05682C. PubMed DOI

Bouř P. Keiderling T. A. J. Chem. Phys. 2002;117:4126–4132. doi: 10.1063/1.1498468. DOI

Yamamoto S. Li X. Ruud K. Bouř P. J. Chem. Theory Comput. 2012;8:977–985. doi: 10.1021/ct200714h. PubMed DOI

Klamt A. Schuurmann G. J. Chem. Soc., Perkin Trans. 2. 1993:799–805. doi: 10.1039/P29930000799. DOI

Buděšínský M. Daněček P. Bednárová L. Kapitán J. Baumruk V. Bouř P. J. Phys. Chem. A. 2008;112:8633–8640. doi: 10.1021/jp806181q. PubMed DOI

Elstner M. Jalkanen K. J. Knapp-Mohammady M. Frauenheim T. Suhai S. Chem. Phys. 2000;256:15–27. doi: 10.1016/S0301-0104(00)00100-2. DOI

Yoneda J. D. Albuquerque M. G. Zaccur K. Seidl P. R. Wheeler R. A. Boesch S. E. de Alencastro R. B. de Souza M. C. Ferreira V. F. J. Mol. Struct.: THEOCHEM. 2006;778:97–103. doi: 10.1016/j.theochem.2006.08.047. DOI

Voelter W. Records R. Bunnenberg E. Djerassi C. J. Am. Chem. Soc. 1968;90:6163–6170. doi: 10.1021/ja01024a039. PubMed DOI

Lin N. Solheim H. Zhao X. Santoro F. Ruud K. J. Chem. Theory Comput. 2013;9:1557–1567. doi: 10.1021/ct301101h. PubMed DOI

Ferrer F. J. A. Santoro F. Phys. Chem. Chem. Phys. 2012;14:13549–13563. doi: 10.1039/C2CP41169E. PubMed DOI

Santoro F. Barone V. Int. J. Quantum Chem. 2010;110:476–486. doi: 10.1002/qua.22197. DOI

Kaminský J. Chalupský J. Štěpánek P. Křiž J. Bouř P. J. Phys. Chem. A. 2017;121:9064–9073. doi: 10.1021/acs.jpca.7b10120. PubMed DOI

Šebek J. Kejík Z. Bouř P. J. Phys. Chem. A. 2006;110:4702–4711. doi: 10.1021/jp060813v. PubMed DOI

Stephens P. J. Adv. Chem. Phys. 1976;35:197–264.

Stephens P. J. J. Chem. Phys. 1970;52:3489–3516. doi: 10.1063/1.1673514. DOI

Stephens P. J. Annu. Rev. Phys. Chem. 1974;25:201–232. doi: 10.1146/annurev.pc.25.100174.001221. DOI

Štěpánek P. Straka M. Šebestík J. Bouř P. Chem. Phys. Lett. 2016;647:117–121. doi: 10.1016/j.cplett.2016.01.047. DOI

Štěpánek P. Straka M. Andrushchenko V. Bouř P. J. Chem. Phys. 2013;138:151103. doi: 10.1063/1.4802763. PubMed DOI

Štěpánek P. Andrushchenko V. Ruud K. Bouř P. J. Phys. Chem. A. 2012;116:778–783. doi: 10.1021/jp2105192. PubMed DOI

Kaminský J. Kubelka J. Bouř P. J. Phys. Chem. A. 2011;115:1724–1742. PubMed

Mennucci B. Cappelli C. Cammi R. Tomasi J. Chirality. 2011;23:717–729. doi: 10.1002/chir.20984. PubMed DOI

Zhang C. Lu C. Jing Z. Wu C. Piquemal J. P. Ponder J. W. Ren P. J. Chem. Theory Comput. 2018;14:2084–2108. doi: 10.1021/acs.jctc.7b01169. PubMed DOI PMC

Barth G. Bunnenberg E. Djerassi C. Anal. Biochem. 1972;48:471–479. doi: 10.1016/0003-2697(72)90100-5. PubMed DOI

Cantor C. R. Warshaw M. M. Shapiro H. Biopolymers. 1970;9:1059–1077. doi: 10.1002/bip.1970.360090909. PubMed DOI

Andrushchenko V. Wieser H. Bouř P. J. Phys. Chem. B. 2004;108:3899–3911. doi: 10.1021/jp037106b. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...